論文の概要: Building Legal Case Retrieval Systems with Lexical Matching and
Summarization using A Pre-Trained Phrase Scoring Model
- arxiv url: http://arxiv.org/abs/2009.14083v1
- Date: Tue, 29 Sep 2020 15:10:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 06:20:18.851914
- Title: Building Legal Case Retrieval Systems with Lexical Matching and
Summarization using A Pre-Trained Phrase Scoring Model
- Title(参考訳): 事前学習フレーズスコーリングモデルを用いた語彙マッチングと要約による訴訟検索システムの構築
- Authors: Vu Tran and Minh Le Nguyen and Ken Satoh
- Abstract要約: 本研究は,2019年法律情報抽出・販売コンペティションの判例検索課題に対処する手法を提案する。
我々のアプローチは、要約が検索に重要であるという考え方に基づいている。
コンペティションのベンチマークにおけるタスクの最先端の結果を達成しました。
- 参考スコア(独自算出の注目度): 1.9275428660922076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present our method for tackling the legal case retrieval task of the
Competition on Legal Information Extraction/Entailment 2019. Our approach is
based on the idea that summarization is important for retrieval. On one hand,
we adopt a summarization based model called encoded summarization which encodes
a given document into continuous vector space which embeds the summary
properties of the document. We utilize the resource of COLIEE 2018 on which we
train the document representation model. On the other hand, we extract lexical
features on different parts of a given query and its candidates. We observe
that by comparing different parts of the query and its candidates, we can
achieve better performance. Furthermore, the combination of the lexical
features with latent features by the summarization-based method achieves even
better performance. We have achieved the state-of-the-art result for the task
on the benchmark of the competition.
- Abstract(参考訳): 本稿では,2019年法情報抽出・補完競争における訴訟検索課題に取り組む方法を提案する。
我々のアプローチは、要約が検索に重要であるという考えに基づいている。
一方、文書の要約特性を埋め込んだ連続ベクトル空間に与えられた文書を符号化する符号化要約モデル(encoded summarization)を採用する。
文書表現モデルをトレーニングするCOLIEE 2018のリソースを活用します。
一方,与えられた問合せの異なる部分とその候補の語彙的特徴を抽出する。
クエリの異なる部分とその候補を比較することで、より良いパフォーマンスが得られることを観察する。
さらに,要約に基づく手法による語彙特徴と潜在特徴の組合せにより,さらに優れた性能が得られる。
我々は,コンペティションのベンチマークにおける課題の最先端の結果を得た。
関連論文リスト
- Thesis: Document Summarization with applications to Keyword extraction and Image Retrieval [0.0]
意見要約のための部分モジュラ関数の集合を提案する。
意見要約は、その中に要約と感情検出のタスクが組み込まれている。
我々の関数は、文書の感情と要約の感情と良いROUGEスコアとの相関関係が良いような要約を生成する。
論文 参考訳(メタデータ) (2024-05-20T21:27:18Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Investigating Consistency in Query-Based Meeting Summarization: A
Comparative Study of Different Embedding Methods [0.0]
テキスト要約は自然言語処理(NLP)分野における有名な応用の1つである。
与えられたコンテキストに基づいて重要な情報による要約を自動的に生成することを目的としている。
本稿では,Microsoft が提案した "QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization" に着想を得た。
また,提案するLocaterモデルを用いて,与えられたテキストとクエリに基づいて関連するスパンを抽出し,それをSummarizerモデルで要約する。
論文 参考訳(メタデータ) (2024-02-10T08:25:30Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - iFacetSum: Coreference-based Interactive Faceted Summarization for
Multi-Document Exploration [63.272359227081836]
iFacetSumは、インタラクティブな要約と顔検索を統合している。
微粒なファセットは、クロスドキュメントのコア参照パイプラインに基づいて自動的に生成される。
論文 参考訳(メタデータ) (2021-09-23T20:01:11Z) - RetrievalSum: A Retrieval Enhanced Framework for Abstractive
Summarization [25.434558112121778]
本稿では,高密度Retriever と Summarizer を組み合わせた新しい検索強化抽象要約フレームワークを提案する。
提案手法は,複数のドメインにまたがる広範囲な要約データセットと,BERTとBARTの2つのバックボーンモデルで検証する。
その結果, ROUGE-1 スコアの1.384.66 倍の精度向上が得られた。
論文 参考訳(メタデータ) (2021-09-16T12:52:48Z) - Legal Search in Case Law and Statute Law [12.697393184074457]
本稿では,典型的法的文書収集の文脈において,文書の相互関連性を識別する手法について述べる。
本稿では、教師あり教師なし学習を含む一般化言語モデルの使用状況について概観する。
論文 参考訳(メタデータ) (2021-08-23T12:51:24Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - Extractive Summarization as Text Matching [123.09816729675838]
本稿では,ニューラル抽出要約システムの構築方法に関するパラダイムシフトを作成する。
抽出した要約タスクを意味テキストマッチング問題として定式化する。
我々はCNN/DailyMailの最先端抽出結果を新しいレベル(ROUGE-1の44.41)に推し進めた。
論文 参考訳(メタデータ) (2020-04-19T08:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。