論文の概要: Toward Privacy and Utility Preserving Image Representation
- arxiv url: http://arxiv.org/abs/2009.14376v2
- Date: Sat, 17 Oct 2020 16:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 00:11:34.972714
- Title: Toward Privacy and Utility Preserving Image Representation
- Title(参考訳): 画像表現のプライバシとユーティリティ保全に向けて
- Authors: Ahmadreza Mosallanezhad and Yasin N. Silva and Michelle V. Mancenido
and Huan Liu
- Abstract要約: 本稿では,プライバシ保護のための画像表現の新規な課題について検討する。
本稿では,AIA(Adversarial Image Anonymizer)と呼ばれる原理的フレームワークを提案する。
AIAはまず、生成モデルを用いて画像表現を作成し、次に、敵対学習を用いて学習した画像表現を拡張して、与えられたタスクのプライバシーと有用性を維持する。
- 参考スコア(独自算出の注目度): 26.768476643200664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face images are rich data items that are useful and can easily be collected
in many applications, such as in 1-to-1 face verification tasks in the domain
of security and surveillance systems. Multiple methods have been proposed to
protect an individual's privacy by perturbing the images to remove traces of
identifiable information, such as gender or race. However, significantly less
attention has been given to the problem of protecting images while maintaining
optimal task utility. In this paper, we study the novel problem of creating
privacy-preserving image representations with respect to a given utility task
by proposing a principled framework called the Adversarial Image Anonymizer
(AIA). AIA first creates an image representation using a generative model, then
enhances the learned image representations using adversarial learning to
preserve privacy and utility for a given task. Experiments were conducted on a
publicly available data set to demonstrate the effectiveness of AIA as a
privacy-preserving mechanism for face images.
- Abstract(参考訳): 顔画像は、有用なリッチなデータ項目であり、セキュリティや監視システムのドメインにおける1対1の顔認証タスクなど、多くのアプリケーションで簡単に収集できる。
性別や人種などの識別可能な情報の痕跡を取り除くために、画像を摂動することで個人のプライバシーを保護する複数の方法が提案されている。
しかしながら、最適なタスクユーティリティを維持しながら画像を保護するという問題に対する注目は大幅に低下している。
本稿では,AIA(Adversarial Image Anonymizer)と呼ばれる原則的フレームワークを提案することにより,プライバシ保護された画像表現を与えられたユーティリティタスクに対して生成する新たな課題について検討する。
AIAはまず、生成モデルを用いて画像表現を作成し、次に、敵対学習を用いて学習した画像表現を拡張して、与えられたタスクのプライバシーと利便性を維持する。
顔画像のプライバシー保護機構としてのAIAの有効性を示すために,公開データセット上で実験を行った。
関連論文リスト
- Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z) - Privacy-Preserving Image Features via Adversarial Affine Subspace
Embeddings [72.68801373979943]
多くのコンピュータビジョンシステムでは、ユーザーは画像処理とストレージのためにイメージ機能をクラウドにアップロードする必要がある。
本稿では,新しいプライバシー保護機能表現を提案する。
従来の特徴と比較すると,敵が個人情報を回収するのは極めて困難である。
論文 参考訳(メタデータ) (2020-06-11T17:29:48Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z) - Privacy-Preserving Image Classification in the Local Setting [17.375582978294105]
ローカル微分プライバシ(LDP)は、データ所有者がランダムにインプットを摂動させ、リリース前にデータの妥当な削除を可能にする、有望なソリューションを提供する。
本稿では、データ所有者が画像を保持し、不信なデータ利用者が機械学習モデルにこれらの画像を入力として適合させたいという、双方向のイメージ分類問題について考察する。
本稿では,拡張性のある領域サイズで画像表現を生成する,教師付き画像特徴抽出器 DCAConv を提案する。
論文 参考訳(メタデータ) (2020-02-09T01:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。