Distributionally Robust Machine Learning with Multi-source Data
- URL: http://arxiv.org/abs/2309.02211v2
- Date: Tue, 26 Sep 2023 18:05:43 GMT
- Title: Distributionally Robust Machine Learning with Multi-source Data
- Authors: Zhenyu Wang, Peter B\"uhlmann, Zijian Guo
- Abstract summary: We introduce a group distributionally robust prediction model to optimize an adversarial reward about explained variance with respect to a class of target distributions.
Compared to classical empirical risk minimization, the proposed robust prediction model improves the prediction accuracy for target populations with distribution shifts.
We demonstrate the performance of our proposed group distributionally robust method on simulated and real data with random forests and neural networks as base-learning algorithms.
- Score: 6.383451076043423
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Classical machine learning methods may lead to poor prediction performance
when the target distribution differs from the source populations. This paper
utilizes data from multiple sources and introduces a group distributionally
robust prediction model defined to optimize an adversarial reward about
explained variance with respect to a class of target distributions. Compared to
classical empirical risk minimization, the proposed robust prediction model
improves the prediction accuracy for target populations with distribution
shifts. We show that our group distributionally robust prediction model is a
weighted average of the source populations' conditional outcome models. We
leverage this key identification result to robustify arbitrary machine learning
algorithms, including, for example, random forests and neural networks. We
devise a novel bias-corrected estimator to estimate the optimal aggregation
weight for general machine-learning algorithms and demonstrate its improvement
in the convergence rate. Our proposal can be seen as a distributionally robust
federated learning approach that is computationally efficient and easy to
implement using arbitrary machine learning base algorithms, satisfies some
privacy constraints, and has a nice interpretation of different sources'
importance for predicting a given target covariate distribution. We demonstrate
the performance of our proposed group distributionally robust method on
simulated and real data with random forests and neural networks as
base-learning algorithms.
Related papers
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Multi-Source Soft Pseudo-Label Learning with Domain Similarity-based
Weighting for Semantic Segmentation [2.127049691404299]
This paper describes a method of domain adaptive training for semantic segmentation using multiple source datasets.
We propose a soft pseudo-label generation method by integrating predicted object probabilities from multiple source models.
arXiv Detail & Related papers (2023-03-02T05:20:36Z) - Distributionally Robust Domain Adaptation [12.02023514105999]
Domain Adaptation (DA) has recently received significant attention due to its potential to adapt a learning model across source and target domains with mismatched distributions.
In this paper, we propose DRDA, a distributionally robust domain adaptation method.
arXiv Detail & Related papers (2022-10-30T17:29:22Z) - Variational Model Perturbation for Source-Free Domain Adaptation [64.98560348412518]
We introduce perturbations into the model parameters by variational Bayesian inference in a probabilistic framework.
We demonstrate the theoretical connection to learning Bayesian neural networks, which proves the generalizability of the perturbed model to target domains.
arXiv Detail & Related papers (2022-10-19T08:41:19Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
Domain generalization aims at learning a universal model that performs well on unseen target domains.
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)
arXiv Detail & Related papers (2022-07-11T14:46:50Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Aggregating distribution forecasts from deep ensembles [0.0]
We propose a general quantile aggregation framework for deep ensembles.
We show that combining forecast distributions from deep ensembles can substantially improve the predictive performance.
arXiv Detail & Related papers (2022-04-05T15:42:51Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics.
Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class.
We propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data.
arXiv Detail & Related papers (2021-08-31T03:17:54Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Aggregating From Multiple Target-Shifted Sources [7.644958631142882]
Multi-source domain adaptation aims at leveraging the knowledge from multiple tasks for predicting a related target domain.
In this paper, we analyzed the problem for aggregating source domains with different label distributions, where most recent source selection approaches fail.
Our proposed algorithm differs from previous approaches in two key ways: the model aggregates multiple sources mainly through the similarity of semantic conditional distribution rather than marginal distribution.
arXiv Detail & Related papers (2021-05-09T23:25:29Z) - Robustness via Cross-Domain Ensembles [0.5801044612920816]
We present a method for making neural network predictions robust to shifts from the training data distribution.
The proposed method is based on making predictions via a diverse set of cues and ensembling them into one strong prediction.
arXiv Detail & Related papers (2021-03-19T17:28:03Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Uncertainty Estimation and Sample Selection for Crowd Counting [87.29137075538213]
We present a method for image-based crowd counting that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map.
A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions.
We show that our sample selection strategy drastically reduces the amount of labeled data needed to adapt a counting network trained on a source domain to the target domain.
arXiv Detail & Related papers (2020-09-30T03:40:07Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
In this thesis, we propose a new framework for approximate inference.
Our proposed four algorithms are motivated by the recent computational progress of Stein's method.
Results on simulated and real datasets indicate the statistical efficiency and wide applicability of our algorithm.
arXiv Detail & Related papers (2020-03-07T04:33:27Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.