Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data
- URL: http://arxiv.org/abs/2409.15374v1
- Date: Thu, 19 Sep 2024 23:08:09 GMT
- Title: Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data
- Authors: Suryansh Vidya, Kush Gupta, Amir Aly, Andy Wills, Emmanuel Ifeachor, Rohit Shankar,
- Abstract summary: Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals.
There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy.
Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data.
This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working.
- Score: 0.29687381456163997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals. However, diagnostics methods for ASD rely on assessments based on clinical presentation that are prone to bias and can be challenging to arrive at an early diagnosis. There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy. Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data. Extensive research has been conducted on creating models that classify ASD using resting-state functional Magnetic Resonance Imaging (fMRI) data. However, existing models lack interpretability. This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working. The dataset used is a preprocessed version of the Autism Brain Imaging Data Exchange (ABIDE) with 884 samples. Our findings show a model that can accurately classify ASD and highlight critical brain regions differing between ASD and typical controls, with potential implications for early diagnosis and understanding of the neural basis of ASD. These findings are validated by studies in the literature that use different datasets and modalities, confirming that the model actually learned characteristics of ASD and not just the dataset. This study advances the field of explainable AI in medical imaging by providing a robust and interpretable model, thereby contributing to a future with objective and reliable ASD diagnostics.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - Proposing a System Level Machine Learning Hybrid Architecture and
Approach for a Comprehensive Autism Spectrum Disorder Diagnosis [1.2691047660244335]
Autism Spectrum Disorder (ASD) is a severe neuropsychiatric disorder that affects intellectual development, social behavior, and facial features.
We propose to develop a hybrid architecture fully utilizing both social behavior and facial feature data to improve the accuracy of diagnosing ASD.
arXiv Detail & Related papers (2021-09-18T04:33:09Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
We propose a convolutional neural network (CNN) algorithm for gaze prediction using images extracted from a one-minute stimulus video.
Our model achieved a high accuracy rate and robustness for prediction of gaze direction with independent persons.
arXiv Detail & Related papers (2020-07-28T18:47:21Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.