論文の概要: Learning Object Detection from Captions via Textual Scene Attributes
- arxiv url: http://arxiv.org/abs/2009.14558v1
- Date: Wed, 30 Sep 2020 10:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 23:53:27.543493
- Title: Learning Object Detection from Captions via Textual Scene Attributes
- Title(参考訳): テキストシーン属性によるキャプションからの物体検出の学習
- Authors: Achiya Jerbi, Roei Herzig, Jonathan Berant, Gal Chechik, Amir
Globerson
- Abstract要約: キャプションには、オブジェクトの属性やそれらの関係など、画像に関するよりリッチな情報が含まれている、と我々は主張する。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
得られたモデルが、いくつかの挑戦的なオブジェクト検出データセットに対して、最先端の結果を達成することを実証的に実証した。
- 参考スコア(独自算出の注目度): 70.90708863394902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is a fundamental task in computer vision, requiring large
annotated datasets that are difficult to collect, as annotators need to label
objects and their bounding boxes. Thus, it is a significant challenge to use
cheaper forms of supervision effectively. Recent work has begun to explore
image captions as a source for weak supervision, but to date, in the context of
object detection, captions have only been used to infer the categories of the
objects in the image. In this work, we argue that captions contain much richer
information about the image, including attributes of objects and their
relations. Namely, the text represents a scene of the image, as described
recently in the literature. We present a method that uses the attributes in
this "textual scene graph" to train object detectors. We empirically
demonstrate that the resulting model achieves state-of-the-art results on
several challenging object detection datasets, outperforming recent approaches.
- Abstract(参考訳): オブジェクト検出はコンピュータビジョンの基本的なタスクであり、アノテータがオブジェクトとそのバウンディングボックスをラベル付けする必要があるため、収集が難しい大規模なアノテートデータセットを必要とする。
したがって、より安価な監視方式を効果的に活用することは重要な課題である。
近年, イメージキャプションを弱監督源として探究する研究が始まっているが, オブジェクト検出の文脈では, イメージ内のオブジェクトのカテゴリを推測するためにのみ, キャプションが用いられている。
本研究では,画像の属性や関連性など,画像に関するより豊かな情報を含むキャプションについて論じる。
すなわち、最近文献に記述されたように、本文は画像の場面を表している。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
その結果得られたモデルがいくつかの挑戦的なオブジェクト検出データセットで最先端の結果を達成できることを実証的に証明し、最近のアプローチを上回っている。
関連論文リスト
- In Defense of Lazy Visual Grounding for Open-Vocabulary Semantic Segmentation [50.79940712523551]
我々は,非教師対象マスク発見の2段階的アプローチである遅延視覚接地を行い,それに続いて物体接地を行う。
私たちのモデルは、追加のトレーニングは必要ありませんが、5つの公開データセットで優れたパフォーマンスを示します。
論文 参考訳(メタデータ) (2024-08-09T09:28:35Z) - PEEKABOO: Hiding parts of an image for unsupervised object localization [7.161489957025654]
教師なしの方法でオブジェクトをローカライズすることは、重要な視覚情報がないために大きな課題となる。
教師なしオブジェクトローカライゼーションのための単段階学習フレームワークPEEKABOOを提案する。
キーとなるアイデアは、画像の一部を選択的に隠し、残りの画像情報を活用して、明示的な監督なしにオブジェクトの位置を推測することである。
論文 参考訳(メタデータ) (2024-07-24T20:35:20Z) - Salient Object Detection for Images Taken by People With Vision
Impairments [13.157939981657886]
本稿では、視覚障害者が撮影した画像を用いた、新しい有能な物体検出データセットを提案する。
VizWiz-SalientObjectは最大(つまり32,000個の人称注釈付き画像)で、ユニークな特徴を持っている。
我々は、我々のデータセットで7つの現代的な正当性オブジェクト検出方法のベンチマークを行い、それらが大きな画像、より複雑な境界、テキストの欠如に最も苦労していることを発見した。
論文 参考訳(メタデータ) (2023-01-12T22:33:01Z) - Learning Object-Language Alignments for Open-Vocabulary Object Detection [83.09560814244524]
画像とテキストのペアデータから直接学習する新しいオープン語彙オブジェクト検出フレームワークを提案する。
これにより、画像とテキストのペア上でオープンな語彙オブジェクト検出器を、よりシンプルで効果的な方法で訓練することが可能になります。
論文 参考訳(メタデータ) (2022-11-27T14:47:31Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
堅牢で汎用的なオブジェクト検出フレームワークを構築するには、より大きなラベルスペースとより大きなトレーニングデータセットへのスケーリングが必要である。
本稿では,近年の視覚と言語モデルで利用可能なリッチなセマンティクスを利用して,未ラベル画像中のオブジェクトのローカライズと分類を行う手法を提案する。
生成した擬似ラベルの価値を,オープン語彙検出と半教師付きオブジェクト検出の2つのタスクで示す。
論文 参考訳(メタデータ) (2022-07-18T21:47:15Z) - Automatic dataset generation for specific object detection [6.346581421948067]
本研究では,オブジェクトの詳細な特徴を,無関係な情報を得ることなく保存することができるオブジェクト・イン・シーン・イメージの合成手法を提案する。
その結果,合成画像では,物体の境界が背景とよく一致していることがわかった。
論文 参考訳(メタデータ) (2022-07-16T07:44:33Z) - DALL-E for Detection: Language-driven Context Image Synthesis for Object
Detection [18.276823176045525]
本稿では,大規模なコンテキスト画像の自動生成のための新しいパラダイムを提案する。
我々のアプローチの核心は、文脈の言語記述と言語駆動画像生成の相互作用を利用することである。
本研究では,4つのオブジェクト検出データセットに対する事前の文脈画像生成手法に対するアプローチの利点を実証する。
論文 参考訳(メタデータ) (2022-06-20T06:43:17Z) - Context-Aware Transfer Attacks for Object Detection [51.65308857232767]
本稿では,オブジェクト検出のためのコンテキスト認識攻撃を新たに生成する手法を提案する。
オブジェクトとその相対的な位置と大きさの共起をコンテキスト情報として利用することにより、ターゲットの誤分類攻撃をうまく生成できることを示す。
論文 参考訳(メタデータ) (2021-12-06T18:26:39Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - Cross-Supervised Object Detection [42.783400918552765]
完全ラベル付きベースカテゴリから学習した知識を活用して、新しいカテゴリの弱いラベル付き画像からより良いオブジェクト検出器を構築する方法を示す。
本稿では,インスタンスレベルのアノテーションから学習した検出ヘッドと,画像レベルのアノテーションから学習した認識ヘッドを組み合わせた統合フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-26T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。