論文の概要: Salient Object Detection for Images Taken by People With Vision
Impairments
- arxiv url: http://arxiv.org/abs/2301.05323v2
- Date: Tue, 5 Sep 2023 18:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:45:46.985958
- Title: Salient Object Detection for Images Taken by People With Vision
Impairments
- Title(参考訳): 視覚障害者が撮影する画像の高次物体検出
- Authors: Jarek Reynolds, Chandra Kanth Nagesh, Danna Gurari
- Abstract要約: 本稿では、視覚障害者が撮影した画像を用いた、新しい有能な物体検出データセットを提案する。
VizWiz-SalientObjectは最大(つまり32,000個の人称注釈付き画像)で、ユニークな特徴を持っている。
我々は、我々のデータセットで7つの現代的な正当性オブジェクト検出方法のベンチマークを行い、それらが大きな画像、より複雑な境界、テキストの欠如に最も苦労していることを発見した。
- 参考スコア(独自算出の注目度): 13.157939981657886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Salient object detection is the task of producing a binary mask for an image
that deciphers which pixels belong to the foreground object versus background.
We introduce a new salient object detection dataset using images taken by
people who are visually impaired who were seeking to better understand their
surroundings, which we call VizWiz-SalientObject. Compared to seven existing
datasets, VizWiz-SalientObject is the largest (i.e., 32,000 human-annotated
images) and contains unique characteristics including a higher prevalence of
text in the salient objects (i.e., in 68\% of images) and salient objects that
occupy a larger ratio of the images (i.e., on average, $\sim$50\% coverage). We
benchmarked seven modern salient object detection methods on our dataset and
found they struggle most with images featuring salient objects that are large,
have less complex boundaries, and lack text as well as for lower quality
images. We invite the broader community to work on our new dataset challenge by
publicly sharing the dataset at
https://vizwiz.org/tasks-and-datasets/salient-object .
- Abstract(参考訳): 正当性オブジェクト検出は、前景オブジェクトと背景オブジェクトとに属するピクセルを解読する画像のためのバイナリマスクを生成するタスクである。
視覚障害者が周囲をよりよく理解しようとした場合,視覚障害者が撮影した画像を用いて,新たな有能な物体検出データセットを提案する。
既存の7つのデータセットと比較すると、VizWiz-SalientObjectは最大(つまり32,000の人間による注釈付き画像)であり、サリアンオブジェクト(68 %のイメージ)におけるテキストの頻度が高く、画像の比率が大きいサリアンオブジェクト(平均で$\sim$50 %のカバレッジ)を含むユニークな特徴を持っている。
われわれのデータセット上で7つの現代的な正当性オブジェクト検出手法をベンチマークした結果、大きめの正当性オブジェクトが特徴的で、境界が複雑で、テキストの欠如や画質の低い画像に最も苦労していることが判明した。
データセットをhttps://vizwiz.org/tasks-and-datasets/salient-object.orgで公開することで、新たなデータセット課題に取り組むために、幅広いコミュニティを招待します。
関連論文リスト
- Retrieval Robust to Object Motion Blur [54.34823913494456]
本研究では,動きのぼやけの影響を受けやすい画像のオブジェクト検索手法を提案する。
ぼやけたオブジェクト検索のための最初の大規模データセットを提示する。
提案手法は,新しいぼやけた検索データセット上で,最先端の検索手法より優れている。
論文 参考訳(メタデータ) (2024-04-27T23:22:39Z) - VizWiz-FewShot: Locating Objects in Images Taken by People With Visual
Impairments [74.72656607288185]
我々は、撮影した画像の視覚的内容について真に学ぼうとしていた写真家を起源とする、数発のローカライゼーションデータセットを紹介した。
視覚障害者が撮影した4500枚以上の画像に、100のカテゴリの約10,000のセグメンテーションが含まれている。
既存の数発のオブジェクト検出やインスタンスセグメンテーションデータセットと比較して、私たちのデータセットは、オブジェクトの穴を見つける最初のものです。
論文 参考訳(メタデータ) (2022-07-24T20:44:51Z) - Automatic dataset generation for specific object detection [6.346581421948067]
本研究では,オブジェクトの詳細な特徴を,無関係な情報を得ることなく保存することができるオブジェクト・イン・シーン・イメージの合成手法を提案する。
その結果,合成画像では,物体の境界が背景とよく一致していることがわかった。
論文 参考訳(メタデータ) (2022-07-16T07:44:33Z) - ImageSubject: A Large-scale Dataset for Subject Detection [9.430492045581534]
主に被写体は、写真家が強調したいものなので、通常、画像やビデオの中に存在します。
主対象を検出することは、機械が画像やビデオの内容を理解するのを助ける重要な技術である。
我々は、オブジェクトのレイアウトを理解し、その中の主要な対象を見つけるために、モデルのトレーニングを目標とする新しいデータセットを提案する。
論文 参考訳(メタデータ) (2022-01-09T22:49:59Z) - Learning to Detect Every Thing in an Open World [139.78830329914135]
我々は、Learning to Detect Every Thing (LDET)と呼ぶ、シンプルながら驚くほど強力なデータ拡張とトレーニングスキームを提案する。
可視だがラベル付けされていない背景オブジェクトの隠蔽を避けるため、元の画像の小さな領域から採取した背景画像上に注釈付きオブジェクトを貼り付ける。
LDETは、オープンワールドのインスタンスセグメンテーションタスクにおいて、多くのデータセットに大きな改善をもたらす。
論文 参考訳(メタデータ) (2021-12-03T03:56:06Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
キャプションには、オブジェクトの属性やそれらの関係など、画像に関するよりリッチな情報が含まれている、と我々は主張する。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
得られたモデルが、いくつかの挑戦的なオブジェクト検出データセットに対して、最先端の結果を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2020-09-30T10:59:20Z) - Evaluating Salient Object Detection in Natural Images with Multiple
Objects having Multi-level Saliency [3.464871689508835]
正当性オブジェクト検出は、ラベルが正当性オブジェクトクラスと背景を持つバイナリ基底真理を用いて評価される。
我々のデータセットは、SalMoN(複数オブジェクトの自然画像の可用性)と呼ばれ、複数のオブジェクトを含む588の画像を持つ。
論文 参考訳(メタデータ) (2020-03-19T00:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。