Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning
- URL: http://arxiv.org/abs/2009.14620v1
- Date: Tue, 29 Sep 2020 00:12:42 GMT
- Title: Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning
- Authors: Lance Eliot
- Abstract summary: Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal Judgment Prediction (LJP) is a longstanding and open topic in the
theory and practice-of-law. Predicting the nature and outcomes of judicial
matters is abundantly warranted, keenly sought, and vigorously pursued by those
within the legal industry and also by society as a whole. The tenuous act of
generating judicially laden predictions has been limited in utility and
exactitude, requiring further advancement. Various methods and techniques to
predict legal cases and judicial actions have emerged over time, especially
arising via the advent of computer-based modeling. There has been a wide range
of approaches attempted, including simple calculative methods to highly
sophisticated and complex statistical models. Artificial Intelligence (AI)
based approaches have also been increasingly utilized. In this paper, a review
of the literature encompassing Legal Judgment Prediction is undertaken, along
with innovatively proposing that the advent of AI Legal Reasoning (AILR) will
have a pronounced impact on how LJP is performed and its predictive accuracy.
Legal Judgment Prediction is particularly examined using the Levels of Autonomy
(LoA) of AI Legal Reasoning, plus, other considerations are explored including
LJP probabilistic tendencies, biases handling, actor predictors, transparency,
judicial reliance, legal case outcomes, and other crucial elements entailing
the overarching legal judicial milieu.
Related papers
- Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
We argue that precedent is a natural way of facilitating explainability for legal NLP models.
By developing a taxonomy of legal precedent, we are able to compare human judges and neural models.
We find that while the models learn to predict outcomes reasonably well, their use of precedent is unlike that of human judges.
arXiv Detail & Related papers (2024-03-25T15:15:41Z) - PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
We identify two unique challenges in making legal case outcome predictions with case law.
First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making.
Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts.
arXiv Detail & Related papers (2024-01-28T21:18:05Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Adversarially Robust Neural Legal Judgement Systems [0.0]
Legal judgment prediction is a task of predicting the outcome of court cases on a given text description of facts of cases.
For such systems to be practically helpful, they should be robust from adversarial attacks.
We propose an approach for making robust Legal Judgement Prediction systems.
arXiv Detail & Related papers (2023-07-31T21:44:48Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
We argue that trustworthy charge prediction models should take legal theories into consideration.
We propose three principles for trustworthy models should follow in this task, which are sensitive, selective, and presumption of innocence.
Our findings indicate that, while existing charge prediction models meet the selective principle on a benchmark dataset, most of them are still not sensitive enough and do not satisfy the presumption of innocence.
arXiv Detail & Related papers (2022-10-31T07:32:12Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
We introduce our newly developed ML-enabled legal prediction model and its operational prototype, eLegPredict.
eLegPredict is trained and tested over 3072 supreme court cases and has achieved 76% accuracy (F1-score)
The eLegPredict is equipped with a mechanism to aid end users, where as soon as a document with new case description is dropped into a designated directory, the system quickly reads through its content and generates prediction.
arXiv Detail & Related papers (2021-09-28T18:28:43Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.