PILOT: Legal Case Outcome Prediction with Case Law
- URL: http://arxiv.org/abs/2401.15770v3
- Date: Sat, 13 Apr 2024 01:59:17 GMT
- Title: PILOT: Legal Case Outcome Prediction with Case Law
- Authors: Lang Cao, Zifeng Wang, Cao Xiao, Jimeng Sun,
- Abstract summary: We identify two unique challenges in making legal case outcome predictions with case law.
First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making.
Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts.
- Score: 43.680862577060765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new framework named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.
Related papers
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
We argue that precedent is a natural way of facilitating explainability for legal NLP models.
By developing a taxonomy of legal precedent, we are able to compare human judges and neural models.
We find that while the models learn to predict outcomes reasonably well, their use of precedent is unlike that of human judges.
arXiv Detail & Related papers (2024-03-25T15:15:41Z) - CaseEncoder: A Knowledge-enhanced Pre-trained Model for Legal Case
Encoding [15.685369142294693]
CaseEncoder is a legal document encoder that leverages fine-grained legal knowledge in both the data sampling and pre-training phases.
CaseEncoder significantly outperforms both existing general pre-training models and legal-specific pre-training models in zero-shot legal case retrieval.
arXiv Detail & Related papers (2023-05-09T12:40:19Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
We propose an interaction-focused network for legal case retrieval with a multi-view contrastive learning objective.
Case-view contrastive learning minimizes the hidden space distance between relevant legal case representations.
We employ a legal element knowledge-aware indicator to detect legal elements of cases.
arXiv Detail & Related papers (2022-10-11T06:47:23Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
We introduce our newly developed ML-enabled legal prediction model and its operational prototype, eLegPredict.
eLegPredict is trained and tested over 3072 supreme court cases and has achieved 76% accuracy (F1-score)
The eLegPredict is equipped with a mechanism to aid end users, where as soon as a document with new case description is dropped into a designated directory, the system quickly reads through its content and generates prediction.
arXiv Detail & Related papers (2021-09-28T18:28:43Z) - What About the Precedent: An Information-Theoretic Analysis of Common
Law [64.49276556192073]
In common law, the outcome of a new case is determined mostly by precedent cases, rather than existing statutes.
We are the first to approach this question by comparing two longstanding jurisprudential views.
We find that the precedent's arguments share 0.38 nats of information with the case's outcome, whereas precedent's facts only share 0.18 nats of information.
arXiv Detail & Related papers (2021-04-25T11:20:09Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
arXiv Detail & Related papers (2020-09-29T00:12:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.