Adversarially Robust Neural Legal Judgement Systems
- URL: http://arxiv.org/abs/2308.00165v1
- Date: Mon, 31 Jul 2023 21:44:48 GMT
- Title: Adversarially Robust Neural Legal Judgement Systems
- Authors: Rohit Raj, V Susheela Devi
- Abstract summary: Legal judgment prediction is a task of predicting the outcome of court cases on a given text description of facts of cases.
For such systems to be practically helpful, they should be robust from adversarial attacks.
We propose an approach for making robust Legal Judgement Prediction systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal judgment prediction is the task of predicting the outcome of court
cases on a given text description of facts of cases. These tasks apply Natural
Language Processing (NLP) techniques to predict legal judgment results based on
facts. Recently, large-scale public datasets and NLP models have increased
research in areas related to legal judgment prediction systems. For such
systems to be practically helpful, they should be robust from adversarial
attacks. Previous works mainly focus on making a neural legal judgement system;
however, significantly less or no attention has been given to creating a robust
Legal Judgement Prediction(LJP) system. We implemented adversarial attacks on
early existing LJP systems and found that none of them could handle attacks. In
this work, we proposed an approach for making robust LJP systems. Extensive
experiments on three legal datasets show significant improvements in our
approach over the state-of-the-art LJP system in handling adversarial attacks.
To the best of our knowledge, we are the first to increase the robustness of
early-existing LJP systems.
Related papers
- Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
We argue that trustworthy charge prediction models should take legal theories into consideration.
We propose three principles for trustworthy models should follow in this task, which are sensitive, selective, and presumption of innocence.
Our findings indicate that, while existing charge prediction models meet the selective principle on a benchmark dataset, most of them are still not sensitive enough and do not satisfy the presumption of innocence.
arXiv Detail & Related papers (2022-10-31T07:32:12Z) - A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and
Challenges [73.34944216896837]
Legal judgment prediction (LJP) applies Natural Language Processing (NLP) techniques to predict judgment results based on fact descriptions automatically.
We analyze 31 LJP datasets in 6 languages, present their construction process and define a classification method of LJP.
We show the state-of-art results for 8 representative datasets from different court cases and discuss the open challenges.
arXiv Detail & Related papers (2022-04-11T04:06:28Z) - Sequential Multi-task Learning with Task Dependency for Appeal Judgment
Prediction [28.505366852202794]
Legal Judgment Prediction (LJP) aims to automatically predict judgment results, such as charges, relevant law articles, and the term of penalty.
This paper concerns a worthwhile but not well-studied LJP task, Appeal judgment Prediction (AJP), which predicts the judgment of an appellate court on an appeal case.
We propose a Sequential Multi-task Learning Framework with Task Dependency for Appeal Judgement Prediction (SMAJudge) to address these challenges.
arXiv Detail & Related papers (2022-03-09T08:51:13Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
We introduce our newly developed ML-enabled legal prediction model and its operational prototype, eLegPredict.
eLegPredict is trained and tested over 3072 supreme court cases and has achieved 76% accuracy (F1-score)
The eLegPredict is equipped with a mechanism to aid end users, where as soon as a document with new case description is dropped into a designated directory, the system quickly reads through its content and generates prediction.
arXiv Detail & Related papers (2021-09-28T18:28:43Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
arXiv Detail & Related papers (2020-09-29T00:12:42Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.