論文の概要: Computational framework for real-time diagnostics and prognostics of
aircraft actuation systems
- arxiv url: http://arxiv.org/abs/2009.14645v1
- Date: Wed, 30 Sep 2020 12:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 00:40:02.292279
- Title: Computational framework for real-time diagnostics and prognostics of
aircraft actuation systems
- Title(参考訳): 航空機アクティベーションシステムのリアルタイム診断と診断のための計算フレームワーク
- Authors: Pier Carlo Berri, Matteo D.L. Dalla Vedova, Laura Mainini
- Abstract要約: 本研究は, 信号取得, 故障検出と同定, 有用寿命推定の3段階に対処する。
この目的を達成するために、異なる忠実度を持つ物理モデルからの情報と機械学習技術を組み合わせることを提案する。
この手法は、二次飛行制御のための航空機の電気機械アクチュエータのFDIおよびRUL推定のために評価される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prognostics and Health Management (PHM) are emerging approaches to product
life cycle that will maintain system safety and improve reliability, while
reducing operating and maintenance costs. This is particularly relevant for
aerospace systems, where high levels of integrity and high performances are
required at the same time. We propose a novel strategy for the nearly real-time
Fault Detection and Identification (FDI) of a dynamical assembly, and for the
estimation of Remaining Useful Life (RUL) of the system. The availability of a
timely estimate of the health status of the system will allow for an informed
adaptive planning of maintenance and a dynamical reconfiguration of the mission
profile, reducing operating costs and improving reliability. This work
addresses the three phases of the prognostic flow - namely (1) signal
acquisition, (2) Fault Detection and Identification, and (3) Remaining Useful
Life estimation - and introduces a computationally efficient procedure suitable
for real-time, on-board execution. To achieve this goal, we propose to combine
information from physical models of different fidelity with machine learning
techniques to obtain efficient representations (surrogate models) suitable for
nearly real-time applications. Additionally, we propose an importance sampling
strategy and a novel approach to model damage propagation for dynamical
systems. The methodology is assessed for the FDI and RUL estimation of an
aircraft electromechanical actuator (EMA) for secondary flight controls. The
results show that the proposed method allows for a high precision in the
evaluation of the system RUL, while outperforming common model-based techniques
in terms of computational time.
- Abstract(参考訳): PHM(Prognostics and Health Management)は、システムの安全性を維持し、信頼性を向上させるとともに、運用コストとメンテナンスコストを削減する製品ライフサイクルへの新たなアプローチである。
これは、高レベルの整合性と高性能を同時に要求する航空宇宙システムにとって特に意味がある。
本稿では,動的アセンブリのほぼリアルタイムな故障検出と同定(FDI)のための新しい手法を提案し,システムの残存寿命(RUL)を推定する。
システムの健康状態のタイムリーな見積が可能となると、メンテナンスの適応的な計画とミッションプロファイルの動的再構成が可能になり、運用コストの削減と信頼性の向上が図られる。
本研究は,(1) 信号取得,(2) 故障検出と同定,(3) 有効な寿命推定,(3) 予測フローの3つのフェーズに対処し,リアルタイム・オンボード実行に適した計算効率の高い手法を提案する。
この目的を達成するために,異なる忠実度を持つ物理モデルと機械学習技術を組み合わせて,ほぼリアルタイムなアプリケーションに適した効率的な表現(代理モデル)を求める。
さらに, 動的システムの損傷伝播をモデル化するための重要サンプリング戦略と新しいアプローチを提案する。
この手法は、二次飛行制御のための航空機電気機械アクチュエータ(EMA)のFDIおよびRUL推定のために評価される。
提案手法は,計算時間の観点から,一般的なモデルベース手法よりも高い精度でシステムRULの評価を行うことができることを示す。
関連論文リスト
- Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes [8.678546901075984]
本稿では,時間変動システムに適した安全な能動学習フレームワークを提案する。
時間認識型平均二乗予測誤差(T-IMSPE)法は,現在および将来の状態に対する後方分散を最小化する。
論文 参考訳(メタデータ) (2024-05-17T07:09:52Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Anomaly Detection for Unmanned Aerial Vehicle Sensor Data Using a
Stacked Recurrent Autoencoder Method with Dynamic Thresholding [0.3441021278275805]
本稿では,Long Short-Term Memory (LSTM) Deep Learning Autoencoderをベースとした,新しい動的しきい値決定アルゴリズムとUAVデータセットの異常検出のための重み付き損失関数を組み込んだシステムを提案する。
動的しきい値と重み付き損失関数は、精度関連性能指標と真の故障検出速度の両方において、標準静的しきい値法に有望な改善を示した。
論文 参考訳(メタデータ) (2022-03-09T14:16:14Z) - A Scalable and Reproducible System-on-Chip Simulation for Reinforcement
Learning [0.0]
本稿では,高忠実度Domain-Specific System-on-Chip (DSSoC) アプリケーションに適した,スケーラブルで再現可能なオープン環境である gym-ds3 を提案する。
シミュレーションは階層的ジョブをヘテロジニアスなsystem-on-chip (soc)プロセッサにスケジュールし、システムを強化学習研究に橋渡しする。
論文 参考訳(メタデータ) (2021-04-27T13:46:57Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Reinforcement Learning Control of Robotic Knee with Human in the Loop by
Flexible Policy Iteration [17.365135977882215]
本研究は,ポリシーアルゴリズムに革新的な特徴を導入することで,重要な空白を埋める。
本稿では,近似値関数の収束,解の最適性,システムの安定性などのシステムレベルの性能を示す。
論文 参考訳(メタデータ) (2020-06-16T09:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。