Facilitating Connected Autonomous Vehicle Operations Using
Space-weighted Information Fusion and Deep Reinforcement Learning Based
Control
- URL: http://arxiv.org/abs/2009.14665v1
- Date: Wed, 30 Sep 2020 13:38:32 GMT
- Title: Facilitating Connected Autonomous Vehicle Operations Using
Space-weighted Information Fusion and Deep Reinforcement Learning Based
Control
- Authors: Jiqian Dong, Sikai Chen, Yujie Li, Runjia Du, Aaron Steinfeld, Samuel
Labi
- Abstract summary: This paper describes a Deep Reinforcement Learning based approach that integrates the data collected through sensing and connectivity capabilities from other vehicles.
It is expected that implementation of the algorithm in CAVs can enhance the safety and mobility associated with CAV driving operations.
- Score: 6.463332275753283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The connectivity aspect of connected autonomous vehicles (CAV) is beneficial
because it facilitates dissemination of traffic-related information to vehicles
through Vehicle-to-External (V2X) communication. Onboard sensing equipment
including LiDAR and camera can reasonably characterize the traffic environment
in the immediate locality of the CAV. However, their performance is limited by
their sensor range (SR). On the other hand, longer-range information is helpful
for characterizing imminent conditions downstream. By contemporaneously
coalescing the short- and long-range information, the CAV can construct
comprehensively its surrounding environment and thereby facilitate informed,
safe, and effective movement planning in the short-term (local decisions
including lane change) and long-term (route choice). In this paper, we describe
a Deep Reinforcement Learning based approach that integrates the data collected
through sensing and connectivity capabilities from other vehicles located in
the proximity of the CAV and from those located further downstream, and we use
the fused data to guide lane changing, a specific context of CAV operations. In
addition, recognizing the importance of the connectivity range (CR) to the
performance of not only the algorithm but also of the vehicle in the actual
driving environment, the paper carried out a case study. The case study
demonstrates the application of the proposed algorithm and duly identifies the
appropriate CR for each level of prevailing traffic density. It is expected
that implementation of the algorithm in CAVs can enhance the safety and
mobility associated with CAV driving operations. From a general perspective,
its implementation can provide guidance to connectivity equipment manufacturers
and CAV operators, regarding the default CR settings for CAVs or the
recommended CR setting in a given traffic environment.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - A Survey of Federated Learning for Connected and Automated Vehicles [2.348805691644086]
Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain.
Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles.
arXiv Detail & Related papers (2023-03-19T14:44:37Z) - Shared Information-Based Safe And Efficient Behavior Planning For
Connected Autonomous Vehicles [6.896682830421197]
We design an integrated information sharing and safe multi-agent reinforcement learning framework for connected autonomous vehicles.
We first use weight pruned convolutional neural networks (CNN) to process the raw image and point cloud LIDAR data locally at each autonomous vehicle.
We then design a safe actor-critic algorithm that utilizes both a vehicle's local observation and the information received via V2V communication.
arXiv Detail & Related papers (2023-02-08T20:31:41Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z) - Leveraging the Capabilities of Connected and Autonomous Vehicles and
Multi-Agent Reinforcement Learning to Mitigate Highway Bottleneck Congestion [2.0010674945048468]
We present an RL-based multi-agent CAV control model to operate in mixed traffic.
The results suggest that even at CAV percent share of corridor traffic as low as 10%, CAVs can significantly mitigate bottlenecks in highway traffic.
arXiv Detail & Related papers (2020-10-12T03:52:10Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
We design an information-sharing-based reinforcement learning framework for connected autonomous vehicles.
We show that our approach can improve the CAV system's efficiency in terms of average velocity and comfort.
We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
arXiv Detail & Related papers (2020-03-09T19:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.