Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach
- URL: http://arxiv.org/abs/2202.09773v1
- Date: Sun, 20 Feb 2022 10:25:15 GMT
- Title: Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach
- Authors: Lige Ding, Dong Zhao, Zhaofeng Wang, Guang Wang, Chang Tan, Lei Fan
and Huadong Ma
- Abstract summary: Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
- Score: 24.505687255063986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing heavy traffic congestion potentially impedes the
accessibility of emergency vehicles (EVs), resulting in detrimental impacts on
critical services and even safety of people's lives. Hence, it is significant
to propose an efficient scheduling approach to help EVs arrive faster. Existing
vehicle-centric scheduling approaches aim to recommend the optimal paths for
EVs based on the current traffic status while the road-centric scheduling
approaches aim to improve the traffic condition and assign a higher priority
for EVs to pass an intersection. With the intuition that real-time vehicle-road
information interaction and strategy coordination can bring more benefits, we
propose LEVID, a LEarning-based cooperative VehIcle-roaD scheduling approach
including a real-time route planning module and a collaborative traffic signal
control module, which interact with each other and make decisions iteratively.
The real-time route planning module adapts the artificial potential field
method to address the real-time changes of traffic signals and avoid falling
into a local optimum. The collaborative traffic signal control module leverages
a graph attention reinforcement learning framework to extract the latent
features of different intersections and abstract their interplay to learn
cooperative policies. Extensive experiments based on multiple real-world
datasets show that our approach outperforms the state-of-the-art baselines.
Related papers
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap
Adaptation for Highway On-Ramp Merging [14.540226579203207]
A platoon refers to a group of vehicles traveling together in very close proximity.
Recent research has revealed a detrimental effect of the extremely small intra-platoon gap on traffic flow for highway on-ramp merging.
We present a novel reinforcement learning framework that adaptively adjusts the intra-platoon gap of an individual platoon member to maximize traffic flow.
arXiv Detail & Related papers (2022-12-07T07:33:54Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
Cooperative coordination at unsignalized road intersections aims to improve the safety driving traffic throughput for connected and automated vehicles.
We introduce a model-free Markov Decision Process (MDP) and tackle it by a Twin Delayed Deep Deterministic Policy (TD3)-based strategy in the deep reinforcement learning framework.
We show that the proposed strategy could achieve near-optimal performance in sub-static coordination scenarios and significantly improve control in the realistic continuous flow.
arXiv Detail & Related papers (2022-05-03T02:56:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
This paper develops a learning-based algorithm to deal with complex intersections with mixed traffic flows.
We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation.
Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems.
arXiv Detail & Related papers (2021-08-30T07:55:32Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.