Basics of observational entropy
- URL: http://arxiv.org/abs/2010.00142v1
- Date: Wed, 30 Sep 2020 23:09:33 GMT
- Title: Basics of observational entropy
- Authors: Joseph Schindler
- Abstract summary: POVM is a general framework for applying the concept of coarse-graining to quantum systems.
We review the basic formalism, survey applications to thermodynamics, make a connection to quantum correlations and entanglement entropy, compare to the corresponding classical theory, and discuss a generalization based on POVM measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These notes provide a brief primer on the basic aspects of "observational
entropy" (also known as "quantum coarse-grained entropy"), a general framework
for applying the concept of coarse-graining to quantum systems. We review the
basic formalism, survey applications to thermodynamics, make a connection to
quantum correlations and entanglement entropy, compare to the corresponding
classical theory, and discuss a generalization based on POVM measurements.
Related papers
- Observational entropy, coarse quantum states, and Petz recovery:
information-theoretic properties and bounds [1.7205106391379026]
We study the mathematical properties of observational entropy from an information-theoretic viewpoint.
We present new bounds on observational entropy applying in general, as well as bounds and identities related to sequential and post-processed measurements.
arXiv Detail & Related papers (2022-09-08T13:22:15Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Quantum logical entropy: fundamentals and general properties [0.0]
We introduce the quantum logical entropy to study quantum systems.
We prove several properties of this entropy for generic density matrices.
We extend the notion of quantum logical entropy to post-selected systems.
arXiv Detail & Related papers (2021-08-05T16:47:22Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - A brief introduction to observational entropy [0.0]
observational entropy has been developed as a quantum generalization of Boltzmann entropy.
This paper reviews the construction, interpretation, most important properties, and some applications of this framework.
arXiv Detail & Related papers (2020-08-10T20:55:35Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum correlation entropy [0.0]
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems.
This "quantum correlation entropy" $Srm QC$ is additive over independent systems, measures total nonclassical correlations, and reduces to the entanglement entropy for bipartite pure states.
arXiv Detail & Related papers (2020-05-11T20:13:43Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.