論文の概要: Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting
- arxiv url: http://arxiv.org/abs/2010.00294v3
- Date: Thu, 15 Oct 2020 08:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:01:46.308498
- Title: Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting
- Title(参考訳): WNUT-2020 タスク2: COVID Twitter BERT を用いたシークエンス分類と多目的投票に基づくバギングアンサンブル手法
- Authors: Anshul Wadhawan
- Abstract要約: 新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the approach that we employed to tackle the EMNLP
WNUT-2020 Shared Task 2 : Identification of informative COVID-19 English
Tweets. The task is to develop a system that automatically identifies whether
an English Tweet related to the novel coronavirus (COVID-19) is informative or
not. We solve the task in three stages. The first stage involves pre-processing
the dataset by filtering only relevant information. This is followed by
experimenting with multiple deep learning models like CNNs, RNNs and
Transformer based models. In the last stage, we propose an ensemble of the best
model trained on different subsets of the provided dataset. Our final approach
achieved an F1-score of 0.9037 and we were ranked sixth overall with F1-score
as the evaluation criteria.
- Abstract(参考訳): 本稿では,emnlp wnut-2020共有タスク2 : 情報提供型covid-19英語つぶやきの同定に用いたアプローチを提案する。
新型コロナウイルスに関連する英語ツイート(covid-19)が有益かどうかを自動的に識別するシステムを開発することが課題だ。
私たちはその仕事を3段階解決する。
最初のステージでは、関連する情報のみをフィルタリングしてデータセットを前処理する。
その後、cnn、rnn、transformerベースのモデルなど、複数のディープラーニングモデルを実験する。
最後の段階では、提供されたデータセットの異なるサブセットでトレーニングされた最良のモデルのアンサンブルを提案する。
最終アプローチでは0.9037のF1スコアを達成し,評価基準としてF1スコアを総合6位とした。
関連論文リスト
- Unify word-level and span-level tasks: NJUNLP's Participation for the
WMT2023 Quality Estimation Shared Task [59.46906545506715]
我々は、WMT 2023 Quality Estimation (QE)共有タスクにNJUNLPチームを紹介する。
私たちのチームは2つのサブタスクすべてで英語とドイツ語のペアの予測を提出しました。
我々のモデルは、単語レベルと細粒度エラースパン検出サブタスクの両方において、英語とドイツ語で最高の結果を得た。
論文 参考訳(メタデータ) (2023-09-23T01:52:14Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
本稿では,WMT'22チャット翻訳タスクに対して,北京地東大学とWeChat AIを共同で提案する。
Transformerに基づいて、いくつかの有効な変種を適用します。
本システムでは,0.810と0.946のCOMETスコアを達成している。
論文 参考訳(メタデータ) (2022-11-28T02:35:04Z) - Alibaba-Translate China's Submission for WMT 2022 Quality Estimation
Shared Task [80.22825549235556]
我々は、UniTEという品質評価共有タスクにおいて、文レベルのMQMベンチマークを提出する。
具体的には、トレーニング中に3種類の入力形式と事前学習された言語モデルを組み合わせたUniTEのフレームワークを用いる。
その結果,我々のモデルは多言語・英語・ロシア語設定では第1位,英語・ドイツ語・中国語設定では第2位に達した。
論文 参考訳(メタデータ) (2022-10-18T08:55:27Z) - Automatic Sexism Detection with Multilingual Transformer Models [0.0]
本稿では,AIT_FHSTPチームによる2つのsexism Identification in Social neTworksタスクに対するEXIST 2021ベンチマークの貢献について述べる。
これらの課題を解決するために,多言語BERTとXLM-Rをベースとした2つの多言語変換モデルを適用した。
我々のアプローチでは、トランスフォーマーを性差別的コンテンツの検出に適用するために、2つの異なる戦略を用いています。
両方のタスクに対して、最高のモデルは、EXISTデータと追加データセットを教師なしで事前トレーニングしたXLM-Rです。
論文 参考訳(メタデータ) (2021-06-09T08:45:51Z) - CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using
Pre-trained Language Models [0.0]
我々はこれをバイナリテキスト分類問題として扱い、事前訓練された言語モデルを用いて実験する。
我々はCT-BERTをベースとしたF1スコアを88.7%、CT-BERT、RoBERTa、SVMのアンサンブルであるF1スコアを88.52%とする。
論文 参考訳(メタデータ) (2020-09-12T12:59:54Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - Device-Robust Acoustic Scene Classification Based on Two-Stage
Categorization and Data Augmentation [63.98724740606457]
我々は,GT,USTC,Tencent,UKEの4つのグループからなる共同で,DCASE 2020 Challengeの第1タスク - 音響シーン分類(ASC)に取り組む。
タスク1aは、複数の(実とシミュレートされた)デバイスで記録されたオーディオ信号のASCを10種類の微細なクラスにフォーカスする。
Task 1bは、低複雑さのソリューションを使用して、データを3つの上位クラスに分類することに関心がある。
論文 参考訳(メタデータ) (2020-07-16T15:07:14Z) - End-to-End Speech-Translation with Knowledge Distillation: FBK@IWSLT2020 [20.456325305495966]
本稿では,FBKによるIWSLT 2020オフライン音声翻訳(ST)タスクへの参加について述べる。
このタスクは、英語のTEDトーク音声をドイツ語のテキストに翻訳するシステムの能力を評価する。
本システムは音声データに対するTransformerの適応に基づくエンドツーエンドモデルである。
論文 参考訳(メタデータ) (2020-06-04T15:47:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。