論文の概要: LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets
- arxiv url: http://arxiv.org/abs/2009.03849v1
- Date: Tue, 8 Sep 2020 16:29:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 21:21:16.636349
- Title: LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets
- Title(参考訳): LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for Identification of Informative COVID-19 English Tweets (英語)
- Authors: Abhilasha Sancheti, Kushal Chawla, Gaurav Verma
- Abstract要約: 本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
- 参考スコア(独自算出の注目度): 4.361526134899725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe our system for WNUT-2020 shared task on the identification of
informative COVID-19 English tweets. Our system is an ensemble of various
machine learning methods, leveraging both traditional feature-based classifiers
as well as recent advances in pre-trained language models that help in
capturing the syntactic, semantic, and contextual features from the tweets. We
further employ pseudo-labelling to incorporate the unlabelled Twitter data
released on the pandemic. Our best performing model achieves an F1-score of
0.9179 on the provided validation set and 0.8805 on the blind test-set.
- Abstract(参考訳): 本稿では,WNUT-2020における情報発信型英語ツイートの識別作業について述べる。
我々のシステムは様々な機械学習手法のアンサンブルであり、従来の特徴に基づく分類と、ツイートから構文的、意味的、文脈的特徴を捉えるのに役立つ事前学習言語モデルの最近の進歩を活用している。
さらに、パンデミックで公表されたラベルなしのtwitterデータを組み込むために、擬似ラベリングも採用しています。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
関連論文リスト
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
論文 参考訳(メタデータ) (2024-04-30T17:06:20Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
本稿では,WMT'22チャット翻訳タスクに対して,北京地東大学とWeChat AIを共同で提案する。
Transformerに基づいて、いくつかの有効な変種を適用します。
本システムでは,0.810と0.946のCOMETスコアを達成している。
論文 参考訳(メタデータ) (2022-11-28T02:35:04Z) - Sequence-level self-learning with multiple hypotheses [53.04725240411895]
我々は、自動音声認識(ASR)のためのアテンションベースシーケンス・ツー・シーケンス(seq2seq)モデルを用いた新しい自己学習手法を開発した。
従来の教師なし学習手法とは対照的に,我々はEmphmulti-task Learning(MTL)フレームワークを採用する。
実験の結果,本手法は,英語データのみを用いてトレーニングしたベースラインモデルと比較して,英文音声データのWERを14.55%から10.36%に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-10T20:47:58Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
本稿では,WNUT-2020 Task2 において,NIT_COVID-19 チームによって提出された WNUT-2020 Task2 における COVID-19 英語のつぶやきを識別するためのモデルを提案する。
共用タスクWNUT 2020 Task2のモデルによる性能はF1スコアの89.14%である。
論文 参考訳(メタデータ) (2020-11-11T05:20:39Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
論文 参考訳(メタデータ) (2020-10-01T10:54:54Z) - Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets [0.0]
本稿では、英語のつぶやきを前提として、そのツイートがCOVID-19に関する情報的内容を持つかどうかを自動的に識別するモデルを提案する。
インフォメーションクラスにおけるF1スコアの約1%は、トップパフォーマンスチームによる結果にしか影響しない競争的な結果を達成しました。
論文 参考訳(メタデータ) (2020-09-14T15:49:16Z) - CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using
Pre-trained Language Models [0.0]
我々はこれをバイナリテキスト分類問題として扱い、事前訓練された言語モデルを用いて実験する。
我々はCT-BERTをベースとしたF1スコアを88.7%、CT-BERT、RoBERTa、SVMのアンサンブルであるF1スコアを88.52%とする。
論文 参考訳(メタデータ) (2020-09-12T12:59:54Z) - BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter
by Combining Deep Learning and Transfer Learning Models [0.0]
本稿では, WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweetsについて述べる。
このタスクのデータセットには、人間によってラベル付けされた英語の1万のツイートが含まれている。
実験結果から, システム上でのインフォーマルラベルのF1は, テストセットで88.81%の精度で達成できたことが示唆された。
論文 参考訳(メタデータ) (2020-09-06T08:24:55Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。