Neural encoding with visual attention
- URL: http://arxiv.org/abs/2010.00516v1
- Date: Thu, 1 Oct 2020 16:04:21 GMT
- Title: Neural encoding with visual attention
- Authors: Meenakshi Khosla, Gia H. Ngo, Keith Jamison, Amy Kuceyeski and Mert R.
Sabuncu
- Abstract summary: We propose a novel approach to neural encoding by including a trainable soft-attention module.
We find that attention locations estimated by the model on independent data agree well with the corresponding eye fixation patterns.
- Score: 17.020869686284165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual perception is critically influenced by the focus of attention. Due to
limited resources, it is well known that neural representations are biased in
favor of attended locations. Using concurrent eye-tracking and functional
Magnetic Resonance Imaging (fMRI) recordings from a large cohort of human
subjects watching movies, we first demonstrate that leveraging gaze
information, in the form of attentional masking, can significantly improve
brain response prediction accuracy in a neural encoding model. Next, we propose
a novel approach to neural encoding by including a trainable soft-attention
module. Using our new approach, we demonstrate that it is possible to learn
visual attention policies by end-to-end learning merely on fMRI response data,
and without relying on any eye-tracking. Interestingly, we find that attention
locations estimated by the model on independent data agree well with the
corresponding eye fixation patterns, despite no explicit supervision to do so.
Together, these findings suggest that attention modules can be instrumental in
neural encoding models of visual stimuli.
Related papers
- Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models [10.615012396285337]
We develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps.
We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%.
arXiv Detail & Related papers (2024-11-11T16:51:17Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
We show that supervised neural information retrieval models are prone to learning sparse attention patterns over passage tokens.
Using a novel targeted synthetic data generation method, we teach neural IR to attend more uniformly and robustly to all entities in a given passage.
arXiv Detail & Related papers (2022-04-24T22:36:48Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Object Based Attention Through Internal Gating [4.941630596191806]
We propose an artificial neural network model of object-based attention.
Our model captures the way in which attention is both top-down and recurrent.
We find that our model replicates a range of findings from neuroscience.
arXiv Detail & Related papers (2021-06-08T17:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.