論文の概要: Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation
- arxiv url: http://arxiv.org/abs/2010.00672v2
- Date: Thu, 24 Dec 2020 21:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:48:58.810601
- Title: Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation
- Title(参考訳): 帰属型入力サンプリングとブロックワイズ特徴集約による畳み込みニューラルネットワークの説明
- Authors: Sam Sattarzadeh, Mahesh Sudhakar, Anthony Lem, Shervin Mehryar, K. N.
Plataniotis, Jongseong Jang, Hyunwoo Kim, Yeonjeong Jeong, Sangmin Lee,
Kyunghoon Bae
- Abstract要約: クラスアクティベーションマッピングとランダムな入力サンプリングに基づく手法が広く普及している。
しかし、帰属法は、その説明力を制限した解像度とぼやけた説明地図を提供する。
本研究では、帰属型入力サンプリング技術に基づいて、モデルの複数の層から可視化マップを収集する。
また,CNNモデル全体に適用可能な層選択戦略を提案する。
- 参考スコア(独自算出の注目度): 22.688772441351308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an emerging field in Machine Learning, Explainable AI (XAI) has been
offering remarkable performance in interpreting the decisions made by
Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs,
methods based on class activation mapping and randomized input sampling have
gained great popularity. However, the attribution methods based on these
techniques provide lower resolution and blurry explanation maps that limit
their explanation power. To circumvent this issue, visualization based on
various layers is sought. In this work, we collect visualization maps from
multiple layers of the model based on an attribution-based input sampling
technique and aggregate them to reach a fine-grained and complete explanation.
We also propose a layer selection strategy that applies to the whole family of
CNN-based models, based on which our extraction framework is applied to
visualize the last layers of each convolutional block of the model. Moreover,
we perform an empirical analysis of the efficacy of derived lower-level
information to enhance the represented attributions. Comprehensive experiments
conducted on shallow and deep models trained on natural and industrial
datasets, using both ground-truth and model-truth based evaluation metrics
validate our proposed algorithm by meeting or outperforming the
state-of-the-art methods in terms of explanation ability and visual quality,
demonstrating that our method shows stability regardless of the size of objects
or instances to be explained.
- Abstract(参考訳): 機械学習の新たな分野として、説明可能なAI(XAI)は、畳み込みニューラルネットワーク(CNN)による決定を解釈する上で、優れたパフォーマンスを提供している。
CNNの視覚的説明を実現するために,クラスアクティベーションマッピングとランダムな入力サンプリングに基づく手法が広く普及している。
しかし,これらの手法に基づく帰属手法は,その説明力を制限する低解像度かつぼやけた説明地図を提供する。
この問題を回避するために、様々な層に基づく可視化を求める。
本研究では,帰属に基づく入力サンプリング手法に基づいて,モデルの複数の層から可視化マップを収集し,それらを集約して詳細な説明に到達させる。
また,cnnベースのモデル群全体に適用可能な層選択戦略を提案し,モデルの各畳み込みブロックの最後の層を可視化するために抽出フレームワークを適用した。
さらに,抽出した下位レベルの情報の有効性を実証的に分析し,その属性を高める。
自然と産業のデータセットで訓練された浅層モデルと深層モデルについて,実測値と実測値の両方を用いて総合的な実験を行い,説明能力と視覚品質の面で最先端手法を満たして検証し,提案手法が説明対象やインスタンスの大きさに関わらず安定性を示すことを示した。
関連論文リスト
- Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability Method は、特定のクラスが特定された場所を示すために、サリエンシマップを生成する。
本稿では,畳み込みニューラルネットワークの機能抽出プロセス全体を説明するポストホック手法を提案する。
また,複数の画像にラベルを集約することで,グローバルな説明を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:21:35Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Enhancing Deep Neural Network Saliency Visualizations with Gradual
Extrapolation [0.0]
Grad-CAMやExcit Backpropagationのようなクラスアクティベーションマッピング手法の拡張手法を提案する。
我々のアイデアはGradual Extrapolationと呼ばれ、出力をシャープすることでヒートマップ画像を生成するメソッドを補うことができる。
論文 参考訳(メタデータ) (2021-04-11T07:39:35Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
トレーニング中に推論ネットワークを用いて生成ネットワークを増強する2段階のジョイントアイデアを提案する。
これにより、ビジュアルドメインとセマンティックドメイン間の効果的な知識伝達のための強力な相互モーダル相互作用が提供される。
提案手法は,4つのベンチマークデータセットに対して,いくつかの最先端手法に対して評価し,その性能を示す。
論文 参考訳(メタデータ) (2020-07-15T15:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。