Continuous close-range 3D object pose estimation
- URL: http://arxiv.org/abs/2010.00829v1
- Date: Fri, 2 Oct 2020 07:48:17 GMT
- Title: Continuous close-range 3D object pose estimation
- Authors: Bjarne Grossmann, Francesco Rovida and Volker Krueger
- Abstract summary: Vision-based 3D pose estimation is a necessity to accurately handle objects that might not be placed at fixed positions.
In this paper, we present a 3D pose estimation method based on a gradient-ascend particle filter.
Thereby, we can apply this method online during task execution to save valuable cycle time.
- Score: 1.4502611532302039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of future manufacturing lines, removing fixtures will be a
fundamental step to increase the flexibility of autonomous systems in assembly
and logistic operations. Vision-based 3D pose estimation is a necessity to
accurately handle objects that might not be placed at fixed positions during
the robot task execution. Industrial tasks bring multiple challenges for the
robust pose estimation of objects such as difficult object properties, tight
cycle times and constraints on camera views. In particular, when interacting
with objects, we have to work with close-range partial views of objects that
pose a new challenge for typical view-based pose estimation methods. In this
paper, we present a 3D pose estimation method based on a gradient-ascend
particle filter that integrates new observations on-the-fly to improve the pose
estimate. Thereby, we can apply this method online during task execution to
save valuable cycle time. In contrast to other view-based pose estimation
methods, we model potential views in full 6- dimensional space that allows us
to cope with close-range partial objects views. We demonstrate the approach on
a real assembly task, in which the algorithm usually converges to the correct
pose within 10-15 iterations with an average accuracy of less than 8mm.
Related papers
- Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
This paper addresses the challenge of robotic grasping of general objects.
The proposed model first runs by proposing a number of most likely grasp points in the scene.
Around each grasp point, a module is designed to infer any voxel in its neighborhood to be either void or occupied by some object.
The model further estimates 6-DoF grasp poses utilizing the local occupancy-enhanced object shape information.
arXiv Detail & Related papers (2024-07-22T16:22:28Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
We show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate pose estimation.
We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera.
arXiv Detail & Related papers (2024-01-04T16:57:56Z) - LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
We focus on object pose estimation.
Our approach relies on three pieces of information: multiple views of the object, the camera's parameters at those viewpoints, and 3D CAD models of objects.
We show that the estimated object pose results in 99.65% grasp accuracy with the ground truth grasp candidates.
arXiv Detail & Related papers (2023-11-14T14:27:53Z) - You Only Look at One: Category-Level Object Representations for Pose
Estimation From a Single Example [26.866356430469757]
We present a method for achieving category-level pose estimation by inspection of just a single object from a desired category.
We demonstrate that our method runs in real-time, enabling a robot manipulator equipped with an RGBD sensor to perform online 6D pose estimation for novel objects.
arXiv Detail & Related papers (2023-05-22T01:32:24Z) - ShapeShift: Superquadric-based Object Pose Estimation for Robotic
Grasping [85.38689479346276]
Current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories.
This paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object.
arXiv Detail & Related papers (2023-04-10T20:55:41Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - 3D Registration for Self-Occluded Objects in Context [66.41922513553367]
We introduce the first deep learning framework capable of effectively handling this scenario.
Our method consists of an instance segmentation module followed by a pose estimation one.
It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure.
arXiv Detail & Related papers (2020-11-23T08:05:28Z) - I Like to Move It: 6D Pose Estimation as an Action Decision Process [53.63776807432945]
Object pose estimation is an integral part of robot vision and AR.
Previous 6D pose retrieval pipelines treat the problem either as a regression task or discretize the pose space to classify.
We change this paradigm and reformulate the problem as an action decision process where an initial pose is updated in incremental discrete steps.
A neural network estimates likely moves from a single RGB image iteratively and determines so an acceptable final pose.
arXiv Detail & Related papers (2020-09-26T20:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.