論文の概要: Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary
Centerline Extraction in Cardiac CT Angiography Scans
- arxiv url: http://arxiv.org/abs/2010.00925v2
- Date: Mon, 7 Dec 2020 06:09:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 02:17:31.612051
- Title: Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary
Centerline Extraction in Cardiac CT Angiography Scans
- Title(参考訳): 心血管造影検査における冠動脈自動抽出のためのマルチリゾリューション3次元畳み込みニューラルネットワーク
- Authors: Zohaib Salahuddin, Matthias Lenga and Hannes Nickisch
- Abstract要約: 本稿では,Wolterink による血管トラッカーを拡張した深層学習型自動冠状動脈幹トラッカー (AuCoTrack) を提案する。
マルチスケール3次元入力で動作する2経路畳み込みニューラルネットワーク(CNN)は、冠動脈の向きを予測する。
類似のマルチスケール2重経路3D CNNは、追跡プロセスの終了のための冠動脈終端を特定するために訓練されている。
- 参考スコア(独自算出の注目度): 3.3774970857450084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep learning-based automatic coronary artery tree centerline
tracker (AuCoTrack) extending the vessel tracker by Wolterink
(arXiv:1810.03143). A dual pathway Convolutional Neural Network (CNN) operating
on multi-scale 3D inputs predicts the direction of the coronary arteries as
well as the presence of a bifurcation. A similar multi-scale dual pathway 3D
CNN is trained to identify coronary artery endpoints for terminating the
tracking process. Two or more continuation directions are derived based on the
bifurcation detection. The iterative tracker detects the entire left and right
coronary artery trees based on only two ostium landmarks derived from a
model-based segmentation of the heart.
The 3D CNNs were trained on a proprietary dataset consisting of 43 CCTA
scans. An average sensitivity of 87.1% and clinically relevant overlap of 89.1%
was obtained relative to a refined manual segmentation. In addition, the MICCAI
2008 Coronary Artery Tracking Challenge (CAT08) training and test datasets were
used to benchmark the algorithm and to assess its generalization. An average
overlap of 93.6% and a clinically relevant overlap of 96.4% were obtained. The
proposed method achieved better overlap scores than the current
state-of-the-art automatic centerline extraction techniques on the CAT08
dataset with a vessel detection rate of 95%.
- Abstract(参考訳): 本稿では,Wolterink (arXiv:1810.03143) により血管トラッカーを拡張する深層学習型自動冠状動脈幹トラッカー (AuCoTrack) を提案する。
マルチスケール3次元入力で動作する2経路畳み込みニューラルネットワーク(CNN)は、冠状動脈の方向と分岐の有無を予測する。
同様のマルチスケールのdual pathway 3d cnnを訓練して冠動脈の終端を同定し、追跡プロセスを終了させる。
2つ以上の継続方向は分岐検出に基づいて導出される。
反復トラッカーは、心臓のモデルベースセグメンテーションに由来する2つのオスティウムランドマークのみに基づいて、左右の冠動脈ツリー全体を検出する。
3D CNNは43のCCTAスキャンからなるプロプライエタリなデータセットでトレーニングされた。
平均感度87.1%,臨床的に有意な重複89.1%を得た。
さらに、miccai 2008 coronary artery tracking challenge (cat08) のトレーニングとテストデータセットがアルゴリズムのベンチマークと一般化の評価に使用された。
平均オーバーラップ93.6%,臨床的に関連したオーバーラップ96.4%が得られた。
提案手法は, 船体検出率95%のCAT08データセットにおいて, 現在の最先端自動中心線抽出技術よりも高いオーバーラップスコアを得た。
関連論文リスト
- Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully
Convolutional Networks [4.062948258086793]
大動脈疾患の早期発見,診断,予後には,CTスキャンによる大動脈血管木の自動的,正確な分画が不可欠である。
我々は2段階の完全畳み込みネットワーク(FCN)を用いて、複数のセンターからスキャン中のAVTを自動的に分割する。
論文 参考訳(メタデータ) (2023-05-16T22:24:01Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Nested-block self-attention for robust radiotherapy planning
segmentation [3.2541650155921142]
深層畳み込みネットワークは、頭頸部(HN)臓器のリスクセグメンテーション(OAR)において広く研究されている。
定期的な臨床治療計画のためのそれらの使用は、イメージングアーティファクトへの堅牢性の欠如、CT上の低い軟組織コントラスト、および異常な解剖の存在によって制限される。
我々は,任意の畳み込みネットワークと組み合わせることができる計算効率の良いネストブロック自己アテンション法(NBSA)を開発した。
論文 参考訳(メタデータ) (2021-02-26T15:28:47Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
我々は,ICAから冠状動脈を抽出する深層学習による自動アルゴリズムの開発を目指している。
本研究では, マルチインプットとマルチスケール(MIMS)のU-Netを2段階の繰り返し訓練戦略として提案した。
実験の結果,提案手法は平均diceスコア 0.8329, 平均感度 0.8281, 平均特異度 0.9979 となり, 73例から294 icasを得た。
論文 参考訳(メタデータ) (2021-01-25T01:48:27Z) - Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI [12.940103904327655]
心臓MRIによる自動心筋梗塞セグメンテーションのためのカスケード畳み込みニューラルネットワークを提案する。
本手法はmiccai 2020 emidec challengeデータセットで評価し, 心筋, 梗塞, 還流のない平均diceスコア 0.8786, 0.7124, 0.7851 をそれぞれ達成した。
論文 参考訳(メタデータ) (2020-12-28T07:41:10Z) - Multiple resolution residual network for automatic thoracic
organs-at-risk segmentation from CT [2.9023633922848586]
我々は,CT画像からのOAR分割のためのMRRN(Multiple resolution residual Network)の実装と評価を行った。
提案手法は,複数画像解像度で計算された特徴ストリームと残差接続による特徴レベルを同時に組み合わせる。
左肺, 心臓, 食道, 脊髄を分画する検査を35回行った肺がん患者206例の胸部CT検査を用いて, アプローチを訓練した。
論文 参考訳(メタデータ) (2020-05-27T22:39:09Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。