論文の概要: Multiple resolution residual network for automatic thoracic
organs-at-risk segmentation from CT
- arxiv url: http://arxiv.org/abs/2005.13690v2
- Date: Sun, 31 May 2020 22:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:43:41.342310
- Title: Multiple resolution residual network for automatic thoracic
organs-at-risk segmentation from CT
- Title(参考訳): CTによる胸部自動切除のための多重分解能残像ネットワーク
- Authors: Hyemin Um, Jue Jiang, Maria Thor, Andreas Rimner, Leo Luo, Joseph O.
Deasy, and Harini Veeraraghavan
- Abstract要約: 我々は,CT画像からのOAR分割のためのMRRN(Multiple resolution residual Network)の実装と評価を行った。
提案手法は,複数画像解像度で計算された特徴ストリームと残差接続による特徴レベルを同時に組み合わせる。
左肺, 心臓, 食道, 脊髄を分画する検査を35回行った肺がん患者206例の胸部CT検査を用いて, アプローチを訓練した。
- 参考スコア(独自算出の注目度): 2.9023633922848586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We implemented and evaluated a multiple resolution residual network (MRRN)
for multiple normal organs-at-risk (OAR) segmentation from computed tomography
(CT) images for thoracic radiotherapy treatment (RT) planning. Our approach
simultaneously combines feature streams computed at multiple image resolutions
and feature levels through residual connections. The feature streams at each
level are updated as the images are passed through various feature levels. We
trained our approach using 206 thoracic CT scans of lung cancer patients with
35 scans held out for validation to segment the left and right lungs, heart,
esophagus, and spinal cord. This approach was tested on 60 CT scans from the
open-source AAPM Thoracic Auto-Segmentation Challenge dataset. Performance was
measured using the Dice Similarity Coefficient (DSC). Our approach outperformed
the best-performing method in the grand challenge for hard-to-segment
structures like the esophagus and achieved comparable results for all other
structures. Median DSC using our method was 0.97 (interquartile range [IQR]:
0.97-0.98) for the left and right lungs, 0.93 (IQR: 0.93-0.95) for the heart,
0.78 (IQR: 0.76-0.80) for the esophagus, and 0.88 (IQR: 0.86-0.89) for the
spinal cord.
- Abstract(参考訳): 胸部放射線治療 (rt) 計画のためのct画像からの複数の正常臓器・リスク (oar) セグメントに対する多重分解能残差ネットワーク (mrrn) の実装と評価を行った。
提案手法は,複数画像解像度で計算された特徴ストリームと残差接続による特徴レベルを同時に組み合わせる。
各レベルのフィーチャーストリームは、画像がさまざまな機能レベルを通過すると更新される。
左肺, 心臓, 食道, 脊髄を分画する検査を35回行った肺がん患者206例の胸部CT検査を用いて, アプローチを訓練した。
このアプローチは、オープンソースのAAPM Thoracic Auto-Segmentation Challengeデータセットから60個のCTスキャンでテストされた。
Dice similarity Coefficient (DSC) を用いて評価した。
このアプローチは食道のような切開が難しい構造物に対する大きな挑戦において最も優れた評価方法となり,他の全ての構造物で同等の結果を得た。
術中DSCは,左肺および右肺に0.97(ICC:0.97-0.98),心に0.93(IQR:0.93-0.95),食道に0.78(IQR:0.76-0.80),脊髄に0.88(IQR:0.86-0.89)であった。
関連論文リスト
- Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation [0.0]
U-Netベースのディープラーニング技術は、自動化された医用画像セグメンテーションのための有望なアプローチとして登場しつつある。
腎腫瘍の診断のためのCTスキャン画像のエンドツーエンド自動セマンティックセマンティックセグメンテーションのための改良されたU-Netモデルを提案する。
論文 参考訳(メタデータ) (2024-10-20T19:02:41Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - A Deep Learning Based Workflow for Detection of Lung Nodules With Chest
Radiograph [0.0]
CXRから肺領域を識別するセグメンテーションモデルを構築し,それを16個のパッチに分割した。
これらのラベル付きパッチを使用して、ディープニューラルネットワーク(DNN)モデルを微調整し、パッチをポジティブまたはネガティブに分類する。
論文 参考訳(メタデータ) (2021-12-19T16:19:46Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Rapid quantification of COVID-19 pneumonia burden from computed
tomography with convolutional LSTM networks [1.0072268949897432]
新型肺炎における肺病変の迅速定量と分化のための新しい完全自動化ディープラーニングフレームワークを提案する。
SARS-CoV-2の陽性逆転写ポリメラーゼ連鎖反応試験結果を有する197例のCTデータセット上で,この方法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-31T22:09:14Z) - Multitask 3D CBCT-to-CT Translation and Organs-at-Risk Segmentation
Using Physics-Based Data Augmentation [4.3971310109651665]
現在の臨床実践では、放射線治療中の患者設定にのみ、ノイズとアーティファクトを付加した毎週のコーンビームCT画像が用いられる。
治療計画には, 高画質計画ct (pct) 画像とoars ( organ-at-risk) 構造の手輪郭を用いて, 治療開始時に一度行う。
OAR構造を同時にセグメンテーションしながら毎週CBCT画像の品質を向上させることができれば、放射線治療中の治療適応や治療応答のためのバイオマーカーの抽出に重要な情報を提供することができる。
論文 参考訳(メタデータ) (2021-03-09T19:51:44Z) - Automated Identification of Thoracic Pathology from Chest Radiographs
with Enhanced Training Pipeline [0.0]
現在入手可能な112のChestX-ray14、30,805人の胸部X線写真を用いています。
各画像には「NoFinding」クラスまたは14の胸部病理組織ラベルが付与された。
k-hotエンコーディングを用いてラベルをバイナリベクトルとして符号化した。
論文 参考訳(メタデータ) (2020-06-11T20:43:09Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。