論文の概要: An alternative proof of the vulnerability of retrieval in high intrinsic
dimensionality neighborhood
- arxiv url: http://arxiv.org/abs/2010.00990v2
- Date: Fri, 20 May 2022 10:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 01:14:20.269568
- Title: An alternative proof of the vulnerability of retrieval in high intrinsic
dimensionality neighborhood
- Title(参考訳): 高内在性次元近傍における検索の脆弱性の代替的証明
- Authors: Teddy Furon
- Abstract要約: 本稿では,データ解析と機械学習において重要なツールである近傍探索の脆弱性について検討する。
この脆弱性は、攻撃者が隣接するランクw.r.tを変更するためにデータセットポイントに追加する必要がある相対的な摂動量として評価されている。
- 参考スコア(独自算出の注目度): 13.307832576532208
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper investigates the vulnerability of the nearest neighbors search,
which is a pivotal tool in data analysis and machine learning. The
vulnerability is gauged as the relative amount of perturbation that an attacker
needs to add onto a dataset point in order to modify its neighbor rank w.r.t. a
query. The statistical distribution of this quantity is derived from simple
assumptions. Experiments on six large scale datasets validate this model up to
some outliers which are explained in term of violations of the assumptions.
- Abstract(参考訳): 本稿では,データ解析と機械学習において重要なツールである近傍探索の脆弱性について検討する。
この脆弱性は、攻撃者が隣接するランクを変更するためにデータセットポイントに追加する必要がある相対的な摂動量として評価されている。
この量の統計的分布は単純な仮定から導かれる。
6つの大規模データセットに関する実験では、このモデルをいくつかの外れ値まで検証している。
関連論文リスト
- BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
フェデレーテッド・ラーニングは、その分散した性質のため、毒殺の被害を受けやすい。
本稿では,この問題を解決するために,分布認識型異常検出機構であるBoBaを提案する。
論文 参考訳(メタデータ) (2024-07-12T19:38:42Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
制約のない画像できめ細かなオブジェクト検出アノテーションを取得するのは、時間がかかり、コストがかかり、ノイズに悩まされる。
ノイズの多いクラウドソースアノテーションでオブジェクト検出をより効果的に訓練するための新しいベイズ検出結合(BDC)フレームワークを提案する。
BDCはモデルに依存しず、アノテータのスキルレベルに関する事前の知識を必要とせず、既存のオブジェクト検出モデルとシームレスに統合される。
論文 参考訳(メタデータ) (2024-07-10T18:00:54Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
本稿では,データ導出情報によるデータ多様体の幾何を考慮した移動型IV推定器を提案する。
本手法のプラグイン・アンド・プレイ実装は,標準設定で関連する推定器と同等に動作する。
論文 参考訳(メタデータ) (2024-05-19T17:49:33Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
我々は,任意の離散データセット上の複数クラス分類器に対するテスト時間攻撃の存在下での損失に対する情報理論的下位境界を求める。
本稿では,データと敵対的制約から競合ハイパーグラフを構築する際に発生する最適0-1損失を求めるための一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-21T15:17:13Z) - Minimax rate of consistency for linear models with missing values [0.0]
多くの実世界のデータセットでは、複数のソースが集約され、本質的に欠落した情報(センサーの故障、調査における未回答の疑問...)が欠落する。
本稿では,広範に研究された線形モデルに焦点をあてるが,不足する値が存在する場合には,非常に難しい課題であることが判明した。
最終的には、多くの学習タスクを解決し、入力機能の数を指数関数的にすることで、現在の現実世界のデータセットでは予測が不可能になる。
論文 参考訳(メタデータ) (2022-02-03T08:45:34Z) - Generalization in the Face of Adaptivity: A Bayesian Perspective [3.0202264016476623]
適応的に選択されたクエリによるデータサンプルの繰り返し使用は、急速に過度な適合につながる可能性がある。
単純なノイズアンバウンド付加アルゴリズムは、この問題を防ぐのに十分であることがわかった。
提案手法では, 過去のクエリに対する応答にデータサンプルに関する情報がどの程度エンコードされたか, ベイズ因子と新しいクエリの共分散から適応性の害が生じることを示す。
論文 参考訳(メタデータ) (2021-06-20T22:06:44Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z) - Evaluating Model Robustness and Stability to Dataset Shift [7.369475193451259]
機械学習モデルの安定性を解析するためのフレームワークを提案する。
本手法では,アルゴリズムが性能の悪い分布を決定するために,元の評価データを用いる。
我々は,アルゴリズムの性能を"Worst-case"分布で推定する。
論文 参考訳(メタデータ) (2020-10-28T17:35:39Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - robROSE: A robust approach for dealing with imbalanced data in fraud
detection [2.1734195143282697]
不正を検知しようとする際の大きな課題は、不正行為が少数派を形成し、データセットのごく一部を占めることだ。
我々はロロースと呼ばれるROSEの頑健なバージョンを提案し、これは不均衡なデータに同時に対処するいくつかの有望なアプローチを組み合わせたものである。
論文 参考訳(メタデータ) (2020-03-22T16:11:07Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。