論文の概要: Bayesian Detector Combination for Object Detection with Crowdsourced Annotations
- arxiv url: http://arxiv.org/abs/2407.07958v1
- Date: Wed, 10 Jul 2024 18:00:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:48:59.198685
- Title: Bayesian Detector Combination for Object Detection with Crowdsourced Annotations
- Title(参考訳): クラウドソースアノテーションを用いた物体検出のためのベイズ検出器の組み合わせ
- Authors: Zhi Qin Tan, Olga Isupova, Gustavo Carneiro, Xiatian Zhu, Yunpeng Li,
- Abstract要約: 制約のない画像できめ細かなオブジェクト検出アノテーションを取得するのは、時間がかかり、コストがかかり、ノイズに悩まされる。
ノイズの多いクラウドソースアノテーションでオブジェクト検出をより効果的に訓練するための新しいベイズ検出結合(BDC)フレームワークを提案する。
BDCはモデルに依存しず、アノテータのスキルレベルに関する事前の知識を必要とせず、既存のオブジェクト検出モデルとシームレスに統合される。
- 参考スコア(独自算出の注目度): 49.43709660948812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise, especially in crowdsourcing scenarios. Most prior object detection methods assume accurate annotations; A few recent works have studied object detection with noisy crowdsourced annotations, with evaluation on distinct synthetic crowdsourced datasets of varying setups under artificial assumptions. To address these algorithmic limitations and evaluation inconsistency, we first propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations, with the unique ability of automatically inferring the annotators' label qualities. Unlike previous approaches, BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models. Due to the scarcity of real-world crowdsourced datasets, we introduce large synthetic datasets by simulating varying crowdsourcing scenarios. This allows consistent evaluation of different models at scale. Extensive experiments on both real and synthetic crowdsourced datasets show that BDC outperforms existing state-of-the-art methods, demonstrating its superiority in leveraging crowdsourced data for object detection. Our code and data are available at https://github.com/zhiqin1998/bdc.
- Abstract(参考訳): 制約のない画像できめ細かいオブジェクト検出アノテーションを取得するのは、特にクラウドソーシングのシナリオにおいて、時間がかかり、コストがかかり、ノイズに悩まされる。
最近のいくつかの研究は、ノイズの多いクラウドソースアノテーションによるオブジェクト検出を研究しており、人工的な仮定の下で様々なクラウドソースデータセットの異なる合成クラウドソースデータセットについて評価している。
これらのアルゴリズムの制限と評価の不整合性に対処するため,我々はまず,アノテータのラベル品質を自動的に推測するユニークな機能を備えた,ノイズの多いクラウドソースアノテーションによるオブジェクト検出をより効果的に訓練する,新しいベイズ検出結合(BDC)フレームワークを提案する。
従来のアプローチとは異なり、BDCはモデルに依存しず、アノテータのスキルレベルに関する事前の知識を必要とせず、既存のオブジェクト検出モデルとシームレスに統合される。
実世界のクラウドソーシングデータセットが不足しているため、さまざまなクラウドソーシングシナリオをシミュレートして大規模な合成データセットを導入する。
これにより、様々なモデルのスケールで一貫した評価が可能になる。
実際のクラウドソースデータセットと合成クラウドソースデータセットの両方に対する大規模な実験により、BDCは既存の最先端手法よりも優れており、クラウドソースされたデータをオブジェクト検出に活用する上での優位性を示している。
私たちのコードとデータはhttps://github.com/zhiqin1998/bdc.comで公開されています。
関連論文リスト
- Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis [15.748043194987075]
この研究は、オープンワールドオブジェクト検出器とOoD検出器を仮想外周で活用することでギャップを埋めることを目的としている。
提案手法では,オブジェクト検出アーキテクチャ全体を拡張して,クラスラベルに依存することなく,異常に認識された特徴表現を学習する。
提案手法は,オブジェクトレベルの異常検出における最先端性能を確立し,自然画像の平均リコールスコアを5.4%以上向上させる。
論文 参考訳(メタデータ) (2024-07-22T16:16:38Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Robust Object Detection With Inaccurate Bounding Boxes [27.664730859319707]
正確なオブジェクト検出器を学習するには、しばしば、正確なオブジェクト境界ボックスを持つ大規模なトレーニングデータが必要である。
本研究では,不正確なバウンディングボックスを用いた頑健な物体検出器の学習という課題に対処することを目的とする。
オブジェクトをインスタンスの袋として扱うことで、私たちはObject-Aware Multiple Instance Learningアプローチを導入します。
論文 参考訳(メタデータ) (2022-07-20T06:57:30Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
Weakly Supervised Detection Transformerを提案する。これは大規模な事前学習データセットからWSODファインタニングへの効率的な知識伝達を可能にする。
提案手法は, 大規模オブジェクト検出データセットにおいて, 従来の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-11T21:45:54Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Dense Relation Distillation with Context-aware Aggregation for Few-Shot
Object Detection [18.04185751827619]
新規なオブジェクトのきめ細かい特徴を、ほんのわずかなデータで簡単に見落としてしまうため、オブジェクト検出は困難である。
本稿では,少数の検出問題に対処するために,DCNet (Context-aware Aggregation) を用いたDense Relation Distillationを提案する。
論文 参考訳(メタデータ) (2021-03-30T05:34:49Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
そこで本研究では,視覚領域における視覚的特徴と視覚的対象の両方を学習するために,視覚的特徴を合成することを提案する。
クラスセマンティックスを用いた新しい生成モデルを用いて特徴を生成するだけでなく,特徴を識別的に分離する。
論文 参考訳(メタデータ) (2020-10-19T12:36:11Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。