論文の概要: Attention-Based Clustering: Learning a Kernel from Context
- arxiv url: http://arxiv.org/abs/2010.01040v1
- Date: Fri, 2 Oct 2020 15:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 00:21:39.489583
- Title: Attention-Based Clustering: Learning a Kernel from Context
- Title(参考訳): 注意に基づくクラスタリング: コンテキストからカーネルを学ぶ
- Authors: Samuel Coward, Erik Visse-Martindale, Chithrupa Ramesh
- Abstract要約: 本稿では,アテンション・ベース・クラスタリング(ABC)を提案する。
ABCは、入力セット内のコンテキストに適応する潜在表現を学ぶように設計されている。
我々は,Omniglot文字のクラスタリングにおける競合的な結果を示し,クラスタリングにおける注目に基づくアプローチの有効性に関する分析的証拠を含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning, no data point stands alone. We believe that context is
an underappreciated concept in many machine learning methods. We propose
Attention-Based Clustering (ABC), a neural architecture based on the attention
mechanism, which is designed to learn latent representations that adapt to
context within an input set, and which is inherently agnostic to input sizes
and number of clusters. By learning a similarity kernel, our method directly
combines with any out-of-the-box kernel-based clustering approach. We present
competitive results for clustering Omniglot characters and include analytical
evidence of the effectiveness of an attention-based approach for clustering.
- Abstract(参考訳): 機械学習では、データポイントは単独では存在しない。
我々は、コンテキストが多くの機械学習手法において未承認の概念であると信じている。
本研究では,アテンション機構に基づくニューラルネットワークであるアテンションベースクラスタリング(abc)を提案する。アテンション機構は,入力セット内のコンテキストに適応し,本質的に入力サイズやクラスタ数に依存しない潜在表現を学習するように設計されている。
類似性カーネルを学習することで、任意のカーネルベースのクラスタリングアプローチと直接結合する。
我々は,全文文字のクラスタリングにおける競争結果を示し,注意に基づくクラスタリング手法の有効性に関する分析的証拠を含む。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Towards Explainable Clustering: A Constrained Declarative based Approach [0.294944680995069]
古典的クラスタリング基準の観点から,高品質なクラスタリングを実現することを目指しており,その説明が可能である。
クラスタリングに関する優れたグローバルな説明は、各クラスタの特徴を、そのオブジェクトを記述する能力を考慮して与えるべきである。
そこで我々は,ECS と呼ばれる新しい解釈可能な制約付き手法を提案する。
論文 参考訳(メタデータ) (2024-03-26T21:00:06Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Clustering -- Basic concepts and methods [0.0]
クラスタリングタスクに対して、データの表現と準備はどのようにすればよいのか?
クラスタリングの結果をどのように検証できるのか?
接続性に基づく対プロトタイプのアプローチについて議論する。
論文 参考訳(メタデータ) (2022-12-01T11:40:32Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
我々はKnAC(Knowledge Augmented Clustering)を紹介します。
KnACは任意のクラスタリングアルゴリズムの拡張として機能し、アプローチを堅牢でモデルに依存しないものにすることができる。
論文 参考訳(メタデータ) (2021-12-16T10:13:47Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
本稿では,インスタンス識別と特徴デコレーションを用いたクラスタリングに親しみやすい表現学習手法を提案する。
CIFAR-10とImageNet-10を用いた画像クラスタリングの評価では,それぞれ81.5%,95.4%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-31T22:59:31Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。