Compressing Images by Encoding Their Latent Representations with
Relative Entropy Coding
- URL: http://arxiv.org/abs/2010.01185v6
- Date: Mon, 19 Apr 2021 09:38:22 GMT
- Title: Compressing Images by Encoding Their Latent Representations with
Relative Entropy Coding
- Authors: Gergely Flamich and Marton Havasi and Jos\'e Miguel Hern\'andez-Lobato
- Abstract summary: Variational Autoencoders (VAEs) have seen widespread use in learned image compression.
We propose a novel method, Relative Entropy Coding (REC), that can directly encode the latent representation with codelength close to the relative entropy for single images.
- Score: 5.687243501594734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Autoencoders (VAEs) have seen widespread use in learned image
compression. They are used to learn expressive latent representations on which
downstream compression methods can operate with high efficiency. Recently
proposed 'bits-back' methods can indirectly encode the latent representation of
images with codelength close to the relative entropy between the latent
posterior and the prior. However, due to the underlying algorithm, these
methods can only be used for lossless compression, and they only achieve their
nominal efficiency when compressing multiple images simultaneously; they are
inefficient for compressing single images. As an alternative, we propose a
novel method, Relative Entropy Coding (REC), that can directly encode the
latent representation with codelength close to the relative entropy for single
images, supported by our empirical results obtained on the Cifar10, ImageNet32
and Kodak datasets. Moreover, unlike previous bits-back methods, REC is
immediately applicable to lossy compression, where it is competitive with the
state-of-the-art on the Kodak dataset.
Related papers
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
We show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
In this paper, we show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
arXiv Detail & Related papers (2024-03-05T11:48:35Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.