論文の概要: Multi-turn Response Selection using Dialogue Dependency Relations
- arxiv url: http://arxiv.org/abs/2010.01502v3
- Date: Thu, 30 Nov 2023 06:44:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 13:03:30.079685
- Title: Multi-turn Response Selection using Dialogue Dependency Relations
- Title(参考訳): 対話依存関係を用いたマルチターン応答選択
- Authors: Qi Jia, Yizhu Liu, Siyu Ren, Kenny Q. Zhu, Haifeng Tang
- Abstract要約: マルチターン応答選択は対話エージェントを開発するために設計されたタスクである。
本稿では,対話履歴を依存関係に基づいてスレッドに変換する対話抽出アルゴリズムを提案する。
我々のモデルは、D7とDSTC8*の両方で最先端のベースラインを上回り、Ubuntu上での競合的な結果です。
- 参考スコア(独自算出の注目度): 39.99448321736736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-turn response selection is a task designed for developing dialogue
agents. The performance on this task has a remarkable improvement with
pre-trained language models. However, these models simply concatenate the turns
in dialogue history as the input and largely ignore the dependencies between
the turns. In this paper, we propose a dialogue extraction algorithm to
transform a dialogue history into threads based on their dependency relations.
Each thread can be regarded as a self-contained sub-dialogue. We also propose
Thread-Encoder model to encode threads and candidates into compact
representations by pre-trained Transformers and finally get the matching score
through an attention layer. The experiments show that dependency relations are
helpful for dialogue context understanding, and our model outperforms the
state-of-the-art baselines on both DSTC7 and DSTC8*, with competitive results
on UbuntuV2.
- Abstract(参考訳): マルチターン応答選択は対話エージェントを開発するために設計されたタスクである。
このタスクのパフォーマンスは、事前訓練された言語モデルで著しく改善されている。
しかし、これらのモデルは単に対話履歴のターンを入力として結合し、ターン間の依存関係をほとんど無視する。
本稿では,対話履歴を依存関係に基づいてスレッドに変換する対話抽出アルゴリズムを提案する。
各スレッドは自己完結したサブダイアログと見なすことができる。
また,事前学習したトランスフォーマによってスレッドや候補をコンパクト表現にエンコードし,最後にアテンション層を通してマッチングスコアを得るスレッドエンコーダモデルを提案する。
実験により,依存関係関係は対話コンテキストの理解に有効であることが示され,私たちのモデルはDSTC7とDSTC8*の双方で最先端のベースラインよりも優れており,UbuntuV2では競合する結果が得られている。
関連論文リスト
- Contextual Data Augmentation for Task-Oriented Dialog Systems [8.085645180329417]
本研究では,ユーザターンを生成する新しいダイアログ拡張モデルを構築し,完全なダイアログコンテキストを条件づける。
言語モデルの新しいプロンプト設計と出力の再ランク付けにより、我々のモデルから生成されたダイアログを直接使用して、下流ダイアログシステムのトレーニングを行うことができる。
論文 参考訳(メタデータ) (2023-10-16T13:22:34Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
対話トピック(DTS)は、様々な対話モデリングタスクにおいて重要な役割を果たす。
本稿では,ラベルなし対話データからトピック対応発話表現を学習する,教師なしDSSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-04T11:35:23Z) - CTRLStruct: Dialogue Structure Learning for Open-Domain Response
Generation [38.60073402817218]
十分に構造化されたトピックフローは、バックグラウンド情報を活用し、将来のトピックを予測することで、制御可能で説明可能な応答を生成する。
本稿では,話題レベルの対話クラスタを効果的に探索する対話構造学習のための新しいフレームワークを提案する。
2つの人気のあるオープンドメイン対話データセットの実験は、優れた対話モデルと比較して、我々のモデルはより一貫性のある応答を生成できることを示している。
論文 参考訳(メタデータ) (2023-03-02T09:27:11Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Multi-Domain Dialogue State Tracking based on State Graph [23.828348485513043]
オープン語彙を用いた多ドメイン対話状態追跡(DST)の問題点について検討する。
既存のアプローチは通常、双方向トランスフォーマーエンコーダへの入力として、対話履歴を持つ前の対話状態である。
本稿では,従来の対話状態からのドメイン,スロット,値が適切に接続された対話状態グラフを構築することを提案する。
論文 参考訳(メタデータ) (2020-10-21T16:55:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。