論文の概要: Inquisitive Question Generation for High Level Text Comprehension
- arxiv url: http://arxiv.org/abs/2010.01657v1
- Date: Sun, 4 Oct 2020 19:03:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 03:50:49.152659
- Title: Inquisitive Question Generation for High Level Text Comprehension
- Title(参考訳): 高レベルテキスト理解のための質問生成
- Authors: Wei-Jen Ko and Te-Yuan Chen and Yiyan Huang and Greg Durrett and Junyi
Jessy Li
- Abstract要約: InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
- 参考スコア(独自算出の注目度): 60.21497846332531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inquisitive probing questions come naturally to humans in a variety of
settings, but is a challenging task for automatic systems. One natural type of
question to ask tries to fill a gap in knowledge during text comprehension,
like reading a news article: we might ask about background information, deeper
reasons behind things occurring, or more. Despite recent progress with
data-driven approaches, generating such questions is beyond the range of models
trained on existing datasets.
We introduce INQUISITIVE, a dataset of ~19K questions that are elicited while
a person is reading through a document. Compared to existing datasets,
INQUISITIVE questions target more towards high-level (semantic and discourse)
comprehension of text. We show that readers engage in a series of pragmatic
strategies to seek information. Finally, we evaluate question generation models
based on GPT-2 and show that our model is able to generate reasonable questions
although the task is challenging, and highlight the importance of context to
generate INQUISITIVE questions.
- Abstract(参考訳): 質問は、さまざまな設定で人間に自然に行われるが、自動システムにとって難しい課題である。
質問する自然なタイプの質問は、ニュース記事を読むなど、テキスト理解中に知識のギャップを埋めようとするものだ。
データ駆動アプローチの最近の進歩にもかかわらず、このような疑問の生成は、既存のデータセットでトレーニングされたモデルの範囲を超えている。
InQUISITIVEは、ある人が文書を読んでいる間に引き出される約19Kの質問のデータセットである。
既存のデータセットと比較すると、INQUISITIVEの質問はテキストの高レベルな(セマンティックな)理解をターゲットとしている。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
最後に,gpt-2に基づく質問生成モデルを評価し,課題が困難ではあるが合理的な質問を生成できることを示すとともに,質問文作成における文脈の重要性を強調する。
関連論文リスト
- How to Engage Your Readers? Generating Guiding Questions to Promote Active Reading [60.19226384241482]
教科書や科学論文から10Kのインテキスト質問のデータセットであるGuidingQを紹介した。
言語モデルを用いてこのような質問を生成するための様々なアプローチを探索する。
我々は、そのような質問が読解に与える影響を理解するために、人間の研究を行う。
論文 参考訳(メタデータ) (2024-07-19T13:42:56Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
質問紙作成作業に特化して構築された最初のデータセットについて述べる。
我々はQsnailの実験を行い、その結果、検索モデルと従来の生成モデルが与えられた研究トピックや意図と完全に一致していないことが明らかとなった。
チェーン・オブ・シークレット・プロンプトと微調整による改善にもかかわらず、言語モデルによるアンケートは、人間の手書きのアンケートには及ばない。
論文 参考訳(メタデータ) (2024-02-22T04:14:10Z) - Diversity Enhanced Narrative Question Generation for Storybooks [4.043005183192124]
マルチクエスト生成モデル(mQG)を導入し,複数の,多様な,回答可能な質問を生成する。
生成した質問の応答性を検証するために,SQuAD2.0の微調整された質問応答モデルを用いる。
mQGは、強力なベースラインの中で、様々な評価指標で有望な結果を示している。
論文 参考訳(メタデータ) (2023-10-25T08:10:04Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
実世界の情報検索フォローアップ質問生成(FQG)の課題について紹介する。
オープンエンド質問に対するRedditフレンドリーな説明を提供するフォーラムレイマンから収集した,3K以上の実世界のデータセット(初期質問,回答,フォローアップ質問)であるFOLLOWUPQGを構築した。
既存のデータセットとは対照的に、FOLLOWUPQGの質問は情報を求めるためにより多様な実用的戦略を使用し、高次認知能力も示している。
論文 参考訳(メタデータ) (2023-09-10T11:58:29Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
対話型調査における知識駆動型フォローアップ質問生成のための新しい課題を提案する。
そこで我々は,対話履歴とラベル付き知識を用いた人手によるフォローアップ質問の新しいデータセットを構築した。
次に,その課題に対する2段階の知識駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-23T00:57:33Z) - Question Generation for Reading Comprehension Assessment by Modeling How
and What to Ask [3.470121495099]
本研究では,推論的質問が重要となる読解のための質問生成(QG)について検討する。
本稿では,従来のデータセットを利用した2段階モデル(HTA-WTA)を提案する。
HTA-WTAモデルでは,深い推論を問うことで,強いSCRSの検証を行う。
論文 参考訳(メタデータ) (2022-04-06T15:52:24Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - Challenges in Information-Seeking QA: Unanswerable Questions and
Paragraph Retrieval [46.3246135936476]
情報検索クエリの応答がより難しい理由と,その原因を解析する。
制御実験の結果,2つのヘッドルーム – 段落選択と応答可能性予測 – が示唆された。
私たちは6つの言語で800の未解決例を手動で注釈付けします。
論文 参考訳(メタデータ) (2020-10-22T17:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。