Improving Relational Regularized Autoencoders with Spherical Sliced
Fused Gromov Wasserstein
- URL: http://arxiv.org/abs/2010.01787v1
- Date: Mon, 5 Oct 2020 05:26:50 GMT
- Title: Improving Relational Regularized Autoencoders with Spherical Sliced
Fused Gromov Wasserstein
- Authors: Khai Nguyen and Son Nguyen and Nhat Ho and Tung Pham and Hung Bui
- Abstract summary: We propose a new relational discrepancy named spherical sliced fused Gromov Wasserstein (SSFG)
We show that the new proposed autoencoders have favorable performance in learning latent manifold structure, image generation, and reconstruction.
- Score: 29.527406546511298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational regularized autoencoder (RAE) is a framework to learn the
distribution of data by minimizing a reconstruction loss together with a
relational regularization on the latent space. A recent attempt to reduce the
inner discrepancy between the prior and aggregated posterior distributions is
to incorporate sliced fused Gromov-Wasserstein (SFG) between these
distributions. That approach has a weakness since it treats every slicing
direction similarly, meanwhile several directions are not useful for the
discriminative task. To improve the discrepancy and consequently the relational
regularization, we propose a new relational discrepancy, named spherical sliced
fused Gromov Wasserstein (SSFG), that can find an important area of projections
characterized by a von Mises-Fisher distribution. Then, we introduce two
variants of SSFG to improve its performance. The first variant, named mixture
spherical sliced fused Gromov Wasserstein (MSSFG), replaces the vMF
distribution by a mixture of von Mises-Fisher distributions to capture multiple
important areas of directions that are far from each other. The second variant,
named power spherical sliced fused Gromov Wasserstein (PSSFG), replaces the vMF
distribution by a power spherical distribution to improve the sampling time in
high dimension settings. We then apply the new discrepancies to the RAE
framework to achieve its new variants. Finally, we conduct extensive
experiments to show that the new proposed autoencoders have favorable
performance in learning latent manifold structure, image generation, and
reconstruction.
Related papers
- Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - Towards Communication-efficient Federated Learning via Sparse and Aligned Adaptive Optimization [65.85963235502322]
Federated Adam (FedAdam) algorithms suffer from a threefold increase in uplink communication overhead.
We propose a novel sparse FedAdam algorithm called FedAdam-SSM, wherein distributed devices sparsify the updates local model parameters and moment estimates.
By minimizing the divergence bound between the model trained by FedAdam-SSM and centralized Adam, we optimize the SSM to mitigate the learning performance degradation caused by sparsification error.
arXiv Detail & Related papers (2024-05-28T07:56:49Z) - How to train your VAE [0.0]
Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
arXiv Detail & Related papers (2023-09-22T19:52:28Z) - DFedADMM: Dual Constraints Controlled Model Inconsistency for
Decentralized Federated Learning [52.83811558753284]
Decentralized learning (DFL) discards the central server and establishes a decentralized communication network.
Existing DFL methods still suffer from two major challenges: local inconsistency and local overfitting.
arXiv Detail & Related papers (2023-08-16T11:22:36Z) - Improving Variational Autoencoders with Density Gap-based Regularization [16.770753948524167]
Variational autoencoders (VAEs) are one of the powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation.
In practice, optimizing ELBo often leads the posterior distribution of all samples converge to the same degenerated local optimum, namely posterior collapse or KL vanishing.
We introduce new training objectives to tackle both problems through a novel regularization based on the probabilistic density gap between the aggregated posterior distribution and the prior distribution.
arXiv Detail & Related papers (2022-11-01T08:17:10Z) - Function-space regularized R\'enyi divergences [6.221019624345409]
We propose a new family of regularized R'enyi divergences parametrized by a variational function space.
We prove several properties of these new divergences, showing that they interpolate between the classical R'enyi divergences and IPMs.
We show that the proposed regularized R'enyi divergences inherit features from IPMs such as the ability to compare distributions that are not absolutely continuous.
arXiv Detail & Related papers (2022-10-10T19:18:04Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
arXiv Detail & Related papers (2021-06-04T15:11:30Z) - Variational Hyper-Encoding Networks [62.74164588885455]
We propose a framework called HyperVAE for encoding distributions of neural network parameters theta.
We predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(theta)
arXiv Detail & Related papers (2020-05-18T06:46:09Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.