論文の概要: MetaBox+: A new Region Based Active Learning Method for Semantic
Segmentation using Priority Maps
- arxiv url: http://arxiv.org/abs/2010.01884v1
- Date: Mon, 5 Oct 2020 09:36:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 21:49:16.454003
- Title: MetaBox+: A new Region Based Active Learning Method for Semantic
Segmentation using Priority Maps
- Title(参考訳): MetaBox+: 優先順位マップを用いたセマンティックセグメンテーションのための領域ベースアクティブラーニング手法
- Authors: Pascal Colling, Lutz Roese-Koerner, Hanno Gottschalk, Matthias
Rottmann
- Abstract要約: 本稿では,MetaBox+と呼ばれるセマンティックイメージセグメンテーションのための新しい能動的学習手法を提案する。
取得にはメタ回帰モデルをトレーニングし、予測された未ラベル画像の各セグメントのセグメントワイド・インターセクション(IoU)を推定する。
提案手法をエントロピーに基づく手法と比較し,エントロピーを予測の不確実性とみなす。
- 参考スコア(独自算出の注目度): 4.396860522241306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel region based active learning method for semantic image
segmentation, called MetaBox+. For acquisition, we train a meta regression
model to estimate the segment-wise Intersection over Union (IoU) of each
predicted segment of unlabeled images. This can be understood as an estimation
of segment-wise prediction quality. Queried regions are supposed to minimize to
competing targets, i.e., low predicted IoU values / segmentation quality and
low estimated annotation costs. For estimating the latter we propose a simple
but practical method for annotation cost estimation. We compare our method to
entropy based methods, where we consider the entropy as uncertainty of the
prediction. The comparison and analysis of the results provide insights into
annotation costs as well as robustness and variance of the methods. Numerical
experiments conducted with two different networks on the Cityscapes dataset
clearly demonstrate a reduction of annotation effort compared to random
acquisition. Noteworthily, we achieve 95%of the mean Intersection over Union
(mIoU), using MetaBox+ compared to when training with the full dataset, with
only 10.47% / 32.01% annotation effort for the two networks, respectively.
- Abstract(参考訳): 本稿では,MetaBox+と呼ばれるセマンティックイメージセグメンテーションのための領域ベースアクティブラーニング手法を提案する。
取得にはメタ回帰モデルをトレーニングし、予測された未ラベル画像の各セグメントのセグメントワイド・インターセクション(IoU)を推定する。
これはセグメントワイズ予測品質の推定として理解することができる。
クエリされたリージョンは、競合するターゲット、すなわち予測値の低いIoU値/セグメンテーション品質と推定アノテーションコストを最小化する。
後者を推定するために,アノテーションコストの簡易かつ実用的な推定法を提案する。
本手法をエントロピーに基づく手法と比較し,エントロピーを予測の不確実性と考える。
結果の比較と分析は、アノテーションのコストとメソッドの堅牢性と分散に関する洞察を提供する。
Cityscapesデータセット上の2つの異なるネットワークを用いて行った数値実験は、ランダムな取得に比べてアノテーションの労力の削減を明らかに示している。
注目すべきなのは、metabox+を使用して、すべてのデータセットでトレーニングする場合と比較して、mau(mean intersection over union)の95%を達成したことです。
関連論文リスト
- Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation [107.72926721837726]
粗いアノテーションは、セマンティックセグメンテーションモデルをトレーニングするための、低コストで非常に効果的な代替手段である。
粗い注釈付きデータの未ラベル領域の擬似ラベルを生成する粗大な自己学習フレームワークを提案する。
提案手法は,アノテーションの予算のごく一部で完全に注釈付けされたデータに匹敵する性能が得られるため,大幅な性能向上とアノテーションのコストトレードオフを実現する。
論文 参考訳(メタデータ) (2022-12-15T15:43:42Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation [25.626882426111198]
意味的セグメンテーションのための教師なしドメイン適応(UDA)は近年研究の注目を集めている。
本稿では,セマンティックセグメンテーションのための2段階エントロピーに基づくUDA手法を提案する。
本稿では,DeepLabV2を用いたSynTHIA-to-CityscapesとGTA5-to-Cityscapesにおける最先端の58.4%と59.6%のmIoUと,軽量BiSeNetを用いた競合性能を実現する。
論文 参考訳(メタデータ) (2022-08-23T03:48:48Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Distribution-aware Margin Calibration for Semantic Segmentation in
Images [78.65312390695038]
ジャカードインデックス(ジャカードインデックス、Intersection-over-Union、IoU)は、画像セマンティックセグメンテーションにおいて最も重要な評価指標の一つである。
IoUスコアの直接最適化は非常に困難である。
学習目的として直接使用できるマージン校正法を提案し,データ分散に対するIoUの一般化を改良する。
論文 参考訳(メタデータ) (2021-12-21T22:38:25Z) - Weighted Intersection over Union (wIoU) for Evaluating Image Segmentation [0.9790236766474198]
意味的セグメンテーションのための重み付け分割(wIoU)と呼ばれる新しい評価尺度を提案する。
まず、境界距離マップから生成される重みマップを構築し、境界重み係数に基づいて各画素の重み付け評価を可能にする。
我々は,33シーンのデータセット上でwIoUの有効性を検証し,その柔軟性を実証した。
論文 参考訳(メタデータ) (2021-07-21T02:59:59Z) - Learning Independent Instance Maps for Crowd Localization [44.6430092887941]
Independent Instance Map segmentation (IIM) という,クラウドローカライゼーションのためのエンドツーエンドかつ簡単なフレームワークを提案する。
IIMセグメントは独立した接続コンポーネントに群集し、位置と群集数を得ます。
異なる密度領域のセグメンテーション品質を向上させるために,微分可能二元化モジュール(bm)を提案する。
BMはローカライズモデルに2つの利点をもたらす: 1) 異なる画像のしきい値マップを適応的に学習し、各インスタンスをより正確に検出する; 2) バイナリ予測とラベルの損失を使ってモデルを直接訓練する。
論文 参考訳(メタデータ) (2020-12-08T02:17:19Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
入力画像の2つのビュー間の画素レベルでの差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分)を最適化することにより自己教師学習を実現する。
ベースライン法であるMoCo-v2と比較すると,計算オーバーヘッドは1%遅かった。
論文 参考訳(メタデータ) (2020-11-18T08:42:32Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Covariate Distribution Aware Meta-learning [3.494950334697974]
本稿では,有意義な緩和を導入することで,計算可能なメタ学習アルゴリズムを提案する。
一般的な分類ベンチマークに基づいて,ブートストラップによるメタラーニングベースラインに対するアルゴリズムの優位性を実証する。
論文 参考訳(メタデータ) (2020-07-06T05:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。