Complex-valued Federated Learning with Differential Privacy and MRI Applications
- URL: http://arxiv.org/abs/2110.03478v2
- Date: Wed, 02 Oct 2024 09:54:32 GMT
- Title: Complex-valued Federated Learning with Differential Privacy and MRI Applications
- Authors: Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis,
- Abstract summary: We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
- Score: 51.34714485616763
- License:
- Abstract: Federated learning enhanced with Differential Privacy (DP) is a powerful privacy-preserving strategy to protect individuals sharing their sensitive data for processing in fields such as medicine and healthcare. Many medical applications, for example magnetic resonance imaging (MRI), rely on complex-valued signal processing techniques for data acquisition and analysis. However, the appropriate application of DP to complex-valued data is still underexplored. To address this issue, from the theoretical side, we introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(\varepsilon, \delta)$-DP and R\'enyi-DP. Moreover, we generalise the fundamental algorithm DP stochastic gradient descent to complex-valued neural networks and present novel complex-valued neural network primitives compatible with DP. Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task (MRI pulse sequence classification in $k$-space), yielding excellent utility and privacy. Our results highlight the relevance of combining federated learning with robust privacy-preserving techniques in the MRI context.
Related papers
- EVENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
We develop an Evidence-based Ensemble Neural Network, namely EVENet, for anatomical brain parcellation using diffusion MRI.
We obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations.
Thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions.
arXiv Detail & Related papers (2024-09-11T05:26:23Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI [14.101371684361675]
We propose a Zonal-aware Self-supervised Mesh Network (Z-SSMNet)
Z-SSMNet adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI.
A self-supervised learning (SSL) technique is proposed to pre-train our network using large-scale unlabeled data.
arXiv Detail & Related papers (2022-12-12T10:08:46Z) - MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space
interpolation [3.0821115746307672]
High-quality reconstruction of MRI images from under-sampled kspace' data is crucial for shortening MRI acquisition times and ensuring superior temporal resolution.
This paper introduces MA-RECON', an innovative mask-aware deep neural network (DNN) architecture and associated training method.
It implements a tailored training approach that leverages data generated with a variety of under-sampling masks to stimulate the model's generalization of the under-sampled MRI reconstruction problem.
arXiv Detail & Related papers (2022-08-31T15:57:38Z) - NeuralDP Differentially private neural networks by design [61.675604648670095]
We propose NeuralDP, a technique for privatising activations of some layer within a neural network.
We experimentally demonstrate on two datasets that our method offers substantially improved privacy-utility trade-offs compared to DP-SGD.
arXiv Detail & Related papers (2021-07-30T12:40:19Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Co-VeGAN: Complex-Valued Generative Adversarial Network for Compressive
Sensing MR Image Reconstruction [8.856953486775716]
We propose a novel framework based on a complex-valued adversarial network (Co-VeGAN) to process complex-valued input.
Our model can process complex-valued input, which enables it to perform high-quality reconstruction of the CS-MR images.
arXiv Detail & Related papers (2020-02-24T20:28:49Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.