論文の概要: Estimating conditional density of missing values using deep Gaussian
mixture model
- arxiv url: http://arxiv.org/abs/2010.02183v2
- Date: Tue, 6 Oct 2020 08:18:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:07:24.345599
- Title: Estimating conditional density of missing values using deep Gaussian
mixture model
- Title(参考訳): 深いガウス混合モデルによる欠落値の条件密度の推定
- Authors: Marcin Przewi\k{e}\'zlikowski, Marek \'Smieja, {\L}ukasz Struski
- Abstract要約: 本稿では,ディープニューラルネットワークの柔軟性とガウス混合モデルの簡易性を組み合わせたアプローチを提案する。
我々は,本モデルが条件付きGMMよりもログ類似度が高いことを実験的に検証した。
- 参考スコア(独自算出の注目度): 5.639904484784126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating the conditional probability
distribution of missing values given the observed ones. We propose an approach,
which combines the flexibility of deep neural networks with the simplicity of
Gaussian mixture models (GMMs). Given an incomplete data point, our neural
network returns the parameters of Gaussian distribution (in the form of Factor
Analyzers model) representing the corresponding conditional density. We
experimentally verify that our model provides better log-likelihood than
conditional GMM trained in a typical way. Moreover, imputation obtained by
replacing missing values using the mean vector of our model looks visually
plausible.
- Abstract(参考訳): 本研究は, 観測値から, 欠落値の条件確率分布を推定する問題を考える。
本稿では,深いニューラルネットワークの柔軟性とガウス混合モデル(GMM)の簡易性を組み合わせたアプローチを提案する。
不完全なデータポイントが与えられると、ニューラルネットワークは対応する条件密度を表すガウス分布のパラメータ(因子アナライザモデルとして)を返します。
我々は,本モデルが条件付きGMMよりもログ類似度が高いことを実験的に検証した。
また,本モデルの平均ベクトルを用いた欠落値の置換によるインプテーションは,視覚的に妥当であると考えられる。
関連論文リスト
- Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets [1.8434042562191815]
高次元重なり合うガウス混合モデル(GMM)データのバイナリ分類におけるベイズ最適決定境界の式を導出する。
我々は、実世界のデータにインスパイアされた合成GMMの実験を通じて、分類のために訓練されたディープニューラルネットワークが、導出した最適な分類器を近似する予測器を学習することを実証的に実証した。
論文 参考訳(メタデータ) (2024-05-28T17:59:31Z) - Score-based generative models break the curse of dimensionality in
learning a family of sub-Gaussian probability distributions [5.801621787540268]
標準ガウス測度に対する相対密度の観点から確率分布の複雑性の概念を導入する。
パラメータが適切に有界なニューラルネットワークで対数相対密度を局所的に近似できるなら、経験的スコアマッチングによって生成された分布はターゲット分布を近似する。
本証明の重要な要素は,前処理に付随する真のスコア関数に対する次元自由深部ニューラルネットワーク近似率を導出することである。
論文 参考訳(メタデータ) (2024-02-12T22:02:23Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
既存のフレームワークを、新しい目的関数を導入することで、重み付けされたサンプルの場合に拡張する。
モデルに柔軟性を加え、マルチモーダル分布を学習できるようにするため、学習可能な事前分布を考える。
提案手法は,既存の適応的重要度サンプリングアルゴリズムを用いて,目標分布から点を抽出し,高次元で稀な事象確率を推定する。
論文 参考訳(メタデータ) (2023-10-13T15:40:55Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Finite mixture of skewed sub-Gaussian stable distributions [0.0]
提案モデルは正規分布とスキュー分布の有限混合を含む。
堅牢なモデルベースのクラスタリングのための強力なモデルとして使用できる。
論文 参考訳(メタデータ) (2022-05-27T15:51:41Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
視覚分類のためのディープニューラルネットワークのためのガウス混合損失関数(GM)を提案する。
分類マージンと可能性正規化により、GM損失は高い分類性能と特徴分布の正確なモデリングの両方を促進する。
提案したモデルは、追加のトレーニング可能なパラメータを使わずに、簡単かつ効率的に実装できる。
論文 参考訳(メタデータ) (2020-11-18T03:32:27Z) - A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models [78.6363825307044]
本研究は、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱うものである。
我々は,エネルギーベースSOMモデルを勾配勾配下降と解釈できることを示した。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMsを使用して外れ値を検出したりサンプリングしたりするための正式な正当性を与える。
論文 参考訳(メタデータ) (2020-09-24T14:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。