論文の概要: A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2009.11710v1
- Date: Thu, 24 Sep 2020 14:09:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 04:14:23.112273
- Title: A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models
- Title(参考訳): 自己組織化マップとガウス混合モデルとの厳密なリンク
- Authors: Alexander Gepperth, Benedikt Pf\"ulb
- Abstract要約: 本研究は、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱うものである。
我々は,エネルギーベースSOMモデルを勾配勾配下降と解釈できることを示した。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMsを使用して外れ値を検出したりサンプリングしたりするための正式な正当性を与える。
- 参考スコア(独自算出の注目度): 78.6363825307044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a mathematical treatment of the relation between
Self-Organizing Maps (SOMs) and Gaussian Mixture Models (GMMs). We show that
energy-based SOM models can be interpreted as performing gradient descent,
minimizing an approximation to the GMM log-likelihood that is particularly
valid for high data dimensionalities. The SOM-like decrease of the neighborhood
radius can be understood as an annealing procedure ensuring that gradient
descent does not get stuck in undesirable local minima. This link allows to
treat SOMs as generative probabilistic models, giving a formal justification
for using SOMs, e.g., to detect outliers, or for sampling.
- Abstract(参考訳): 本研究では、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱う。
エネルギーベースSOMモデルは、特に高次元に有効であるGMMログの近似を最小化することにより、勾配降下を行うことができることを示す。
近辺半径のSOM様の減少は、勾配降下が望ましくない局所最小値に収まらないようにするアニール法として理解することができる。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMs(例えば、外れ値の検出やサンプリングのための公式な正当化を与える。
関連論文リスト
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Noise in the reverse process improves the approximation capabilities of
diffusion models [27.65800389807353]
生成モデリングにおける最先端技術であるスコアベース生成モデリング(SGM)では、リバースプロセスは決定論的手法よりも優れた性能を発揮することが知られている。
本稿では,ニューラル常微分方程式 (ODE) とニューラルディメンション方程式 (SDE) を逆過程として比較し,この現象の核となる。
我々は、Fokker-Planck方程式の軌跡を近似するニューラルSDEの能力を解析し、ニューラルティの利点を明らかにする。
論文 参考訳(メタデータ) (2023-12-13T02:39:10Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Incremental Multimodal Surface Mapping via Self-Organizing Gaussian
Mixture Models [1.0878040851638]
本文では,環境を連続確率モデルとして表わすインクリメンタルなマルチモーダル表面マッピング手法について述べる。
この研究で使用される戦略は環境を表現するためにガウス混合モデル(GMM)を用いる。
このギャップを埋めるために,高速GMMサブマップ抽出のための空間ハッシュマップを導入する。
論文 参考訳(メタデータ) (2023-09-19T19:49:03Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
視覚分類のためのディープニューラルネットワークのためのガウス混合損失関数(GM)を提案する。
分類マージンと可能性正規化により、GM損失は高い分類性能と特徴分布の正確なモデリングの両方を促進する。
提案したモデルは、追加のトレーニング可能なパラメータを使わずに、簡単かつ効率的に実装できる。
論文 参考訳(メタデータ) (2020-11-18T03:32:27Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Estimating conditional density of missing values using deep Gaussian
mixture model [5.639904484784126]
本稿では,ディープニューラルネットワークの柔軟性とガウス混合モデルの簡易性を組み合わせたアプローチを提案する。
我々は,本モデルが条件付きGMMよりもログ類似度が高いことを実験的に検証した。
論文 参考訳(メタデータ) (2020-10-05T17:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。