論文の概要: Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution
- arxiv url: http://arxiv.org/abs/2010.02244v1
- Date: Mon, 5 Oct 2020 18:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 20:03:04.382623
- Title: Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution
- Title(参考訳): 都市屋外大気汚染をモデル化する条件付き生成型逆ネットワーク
- Authors: Jamal Toutouh
- Abstract要約: 本稿では, 所定の分類に従って, 合成二酸化窒素の日時系列を生成できるモデルを訓練することを提案する。
提案手法は, 計算時間削減を必要としながら, 高精度で多彩な毎日の汚染時系列を生成することができる。
- 参考スコア(独自算出の注目度): 0.8122270502556374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This is a relevant problem because the design of most cities prioritizes the
use of motorized vehicles, which has degraded air quality in recent years,
having a negative effect on urban health. Modeling, predicting, and forecasting
ambient air pollution is an important way to deal with this issue because it
would be helpful for decision-makers and urban city planners to understand the
phenomena and to take solutions. In general, data-driven methods for modeling,
predicting, and forecasting outdoor pollution requires an important amount of
data, which may limit their accuracy. In order to deal with such a lack of
data, we propose to train models able to generate synthetic nitrogen dioxide
daily time series according to a given classification that will allow an
unlimited generation of realistic data. The main experimental results indicate
that the proposed approach is able to generate accurate and diverse pollution
daily time series, while requiring reduced computational time.
- Abstract(参考訳): なぜなら、ほとんどの都市の設計は、近年の空気の質を低下させ、都市健康に悪影響を及ぼす自動車の使用を優先しているからである。
環境大気汚染のモデル化、予測、予測は、意思決定者や都市計画者がその現象を理解し、解決策を取るのに役立つため、この問題に対処する重要な方法である。
一般に、屋外汚染のモデル化、予測、予測のためのデータ駆動手法は、その正確性を制限する重要な量のデータを必要とする。
このようなデータ不足に対処するため,我々は,現実的なデータを無制限に生成可能な,所定の分類に従って合成二酸化窒素時系列を生成可能なモデルを訓練することを提案する。
主な実験結果から,提案手法は計算時間削減を必要としながら,正確かつ多彩な毎日の汚染時系列を生成できることが示唆された。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Novel Approach for Predicting the Air Quality Index of Megacities through Attention-Enhanced Deep Multitask Spatiotemporal Learning [0.2886273197127056]
大気汚染は、特に都市部において、世界中の人間の健康にとって最も深刻な環境脅威の1つだ。
人口1000万人を超える都市として定義されるメガシティーは、深刻な汚染のホットスポットとして頻繁に見られる。
本稿では,長期記憶ネットワークに基づく注意力強化型ディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2024-07-15T23:43:50Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
大気汚染は公衆衛生、特に都市部において重大な脅威となる。
本研究では, センチネル5P衛星のデータ, 気象条件, トポロジカル特性を統合し, 5つの主要な汚染物質の将来レベルを予測する機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-30T10:02:53Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - State estimation of urban air pollution with statistical, physical, and
super-learning graph models [0.0]
本稿では,問題を都市グラフに反映したさまざまな再構築手法を提案する。
私たちの戦略は、完全なデータ駆動、物理駆動、ハイブリッドに分類されます。
この手法の性能は、フランスのパリ中心部の都市で試験される。
論文 参考訳(メタデータ) (2024-02-05T08:42:39Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
大気汚染は様々な方法で変化し、多くの複雑な要因に依存する。
画像に基づく表現は、大気汚染やその他の影響要因が自然なグラフ構造を持つため理想的ではないかもしれない。
グラフ畳み込みネットワーク(GCN: Graph Convolutional Network)は、都市全体における空気質の読み出しの空間的特徴を効率的に表現することができる。
本手法は, 実環境大気汚染データを用いたハイブリッドGCN法よりも優れている。
論文 参考訳(メタデータ) (2023-04-25T07:57:07Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Deciphering Environmental Air Pollution with Large Scale City Data [0.0]
交通や発電所からの排出、家庭からの排出、自然発生など、様々な要因が大気汚染の上昇の背後にある主要な原因要因または影響要因であることが知られている。
本稿では,これらのエージェント間の関係を長期にわたって探索するための大規模都市情報データセットを提案する。
また,多種多様なモデルと方法論を用いて汚染物質レベルを推定または予測する問題に対するベンチマークのセットを提供する。
論文 参考訳(メタデータ) (2021-09-09T22:00:51Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。