論文の概要: State estimation of urban air pollution with statistical, physical, and
super-learning graph models
- arxiv url: http://arxiv.org/abs/2402.02812v1
- Date: Mon, 5 Feb 2024 08:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 17:24:53.415460
- Title: State estimation of urban air pollution with statistical, physical, and
super-learning graph models
- Title(参考訳): 統計・物理・超学習グラフモデルによる都市大気汚染状態の推定
- Authors: Matthieu Dolbeault, Olga Mula and Agust\'in Somacal
- Abstract要約: 本稿では,問題を都市グラフに反映したさまざまな再構築手法を提案する。
私たちの戦略は、完全なデータ駆動、物理駆動、ハイブリッドに分類されます。
この手法の性能は、フランスのパリ中心部の都市で試験される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of real-time reconstruction of urban air pollution
maps. The task is challenging due to the heterogeneous sources of available
data, the scarcity of direct measurements, the presence of noise, and the large
surfaces that need to be considered. In this work, we introduce different
reconstruction methods based on posing the problem on city graphs. Our
strategies can be classified as fully data-driven, physics-driven, or hybrid,
and we combine them with super-learning models. The performance of the methods
is tested in the case of the inner city of Paris, France.
- Abstract(参考訳): 都市大気汚染マップのリアルタイム再構築の問題点を考察する。
このタスクは、利用可能なデータの不均一なソース、直接測定の不足、ノイズの存在、考慮すべき大きな表面のために困難である。
本研究は,都市グラフ上の問題に対するポーズに基づく異なる再構成手法を提案する。
私たちの戦略は、完全なデータ駆動、物理駆動、ハイブリッドに分類でき、それらをスーパーラーニングモデルと組み合わせます。
この手法の性能は、フランスのパリ市内で試験されている。
関連論文リスト
- Towards Generative Modeling of Urban Flow through Knowledge-enhanced
Denoising Diffusion [27.045479361702373]
既存の研究は主に、過去の流れデータに基づいて将来の流れを予測する都市流れの予測モデルに焦点を当てている。
他の研究は、地域間のODフローを予測することを目的としているが、時間とともに都市フローの動的変化をモデル化することができない。
本研究では,歴史的流れデータのない地域を対象とした動的都市流を生成する都市流生成の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-09-19T11:52:57Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
大気汚染は様々な方法で変化し、多くの複雑な要因に依存する。
画像に基づく表現は、大気汚染やその他の影響要因が自然なグラフ構造を持つため理想的ではないかもしれない。
グラフ畳み込みネットワーク(GCN: Graph Convolutional Network)は、都市全体における空気質の読み出しの空間的特徴を効率的に表現することができる。
本手法は, 実環境大気汚染データを用いたハイブリッドGCN法よりも優れている。
論文 参考訳(メタデータ) (2023-04-25T07:57:07Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
大気の乱流は、ぼやけや幾何学的歪みを導入して画質を著しく劣化させる。
CNNベースやGANインバージョンベースなど,深層学習に基づく単一画像大気乱流低減手法が提案されている。
Denoising Diffusion Probabilistic Models (DDPMs) は、その安定したトレーニングプロセスと高品質な画像を生成する能力により、最近注目を集めている。
論文 参考訳(メタデータ) (2022-08-24T03:13:04Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
都市域の表現を学習するためのヘテロジニアスな都市グラフアテンションネットワーク(HUGAT)を提案する。
ニューヨークのデータに関する我々の実験では、HUGATは最先端のすべてのモデルより優れています。
論文 参考訳(メタデータ) (2022-02-18T04:59:20Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
本稿では, 生物系統学から得られた都市形態の数値分類法を提案する。
我々は同質の都市組織タイプを導出し、それら間の全体形態的類似性を決定することにより、都市形態の階層的分類を生成する。
フレーミングとプレゼンを行った後、プラハとアムステルダムの2都市でテストを行った。
論文 参考訳(メタデータ) (2021-04-30T12:47:52Z) - Conditional Generative Adversarial Networks to Model Urban Outdoor Air
Pollution [0.8122270502556374]
本稿では, 所定の分類に従って, 合成二酸化窒素の日時系列を生成できるモデルを訓練することを提案する。
提案手法は, 計算時間削減を必要としながら, 高精度で多彩な毎日の汚染時系列を生成することができる。
論文 参考訳(メタデータ) (2020-10-05T18:01:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。