Iterative Improvement of an Additively Regularized Topic Model
- URL: http://arxiv.org/abs/2408.05840v3
- Date: Wed, 25 Sep 2024 20:50:00 GMT
- Title: Iterative Improvement of an Additively Regularized Topic Model
- Authors: Alex Gorbulev, Vasiliy Alekseev, Konstantin Vorontsov,
- Abstract summary: We present a method for iterative training of a topic model.
Experiments conducted on several collections of natural language texts show that the proposed ITAR model performs better than other popular topic models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic modelling is fundamentally a soft clustering problem (of known objects -- documents, over unknown clusters -- topics). That is, the task is incorrectly posed. In particular, the topic models are unstable and incomplete. All this leads to the fact that the process of finding a good topic model (repeated hyperparameter selection, model training, and topic quality assessment) can be particularly long and labor-intensive. We aim to simplify the process, to make it more deterministic and provable. To this end, we present a method for iterative training of a topic model. The essence of the method is that a series of related topic models are trained so that each subsequent model is at least as good as the previous one, i.e., that it retains all the good topics found earlier. The connection between the models is achieved by additive regularization. The result of this iterative training is the last topic model in the series, which we call the iteratively updated additively regularized topic model (ITAR). Experiments conducted on several collections of natural language texts show that the proposed ITAR model performs better than other popular topic models (LDA, ARTM, BERTopic), its topics are diverse, and its perplexity (ability to "explain" the underlying data) is moderate.
Related papers
- Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
We propose a novel approach that leverages large language models (LLMs) to extend short texts into more detailed sequences before applying topic modeling.
Our method significantly improves short-text topic modeling performance, as demonstrated by extensive experiments on real-world datasets with extreme data sparsity.
arXiv Detail & Related papers (2024-10-04T01:28:56Z) - Investigating the Impact of Text Summarization on Topic Modeling [13.581341206178525]
In this paper, an approach is proposed that further enhances topic modeling performance by utilizing a pre-trained large language model (LLM)
Few shot prompting is used to generate summaries of different lengths to compare their impact on topic modeling.
The proposed method yields better topic diversity and comparable coherence values compared to previous models.
arXiv Detail & Related papers (2024-09-28T19:45:45Z) - An Iterative Approach to Topic Modelling [0.0]
We propose to use an iterative process to perform topic modelling that gives rise to a sense of completeness of the resulting topics when the process is complete.
We demonstrate how the modelling process can be applied iteratively to arrive at a set of topics that could not be further improved upon using one of the three selected measures for clustering comparison.
arXiv Detail & Related papers (2024-07-25T09:26:07Z) - Let the Pretrained Language Models "Imagine" for Short Texts Topic
Modeling [29.87929724277381]
In short texts, co-occurrence information is minimal, which results in feature sparsity in document representation.
Existing topic models (probabilistic or neural) mostly fail to mine patterns from them to generate coherent topics.
We extend short text into longer sequences using existing pre-trained language models (PLMs)
arXiv Detail & Related papers (2023-10-24T00:23:30Z) - Neural Dynamic Focused Topic Model [2.9005223064604078]
We leverage recent advances in neural variational inference and present an alternative neural approach to the dynamic Focused Topic Model.
We develop a neural model for topic evolution which exploits sequences of Bernoulli random variables in order to track the appearances of topics.
arXiv Detail & Related papers (2023-01-26T08:37:34Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z) - Improving Neural Topic Models using Knowledge Distillation [84.66983329587073]
We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers.
Our modular method can be straightforwardly applied with any neural topic model to improve topic quality.
arXiv Detail & Related papers (2020-10-05T22:49:16Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
We propose a topic adaptive storyteller to model the ability of inter-topic generalization.
We also propose a prototype encoding structure to model the ability of intra-topic derivation.
Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model.
arXiv Detail & Related papers (2020-08-11T03:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.