論文の概要: Multi-task Learning for Multilingual Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2010.02523v1
- Date: Tue, 6 Oct 2020 06:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 05:28:48.218626
- Title: Multi-task Learning for Multilingual Neural Machine Translation
- Title(参考訳): 多言語ニューラルマシン翻訳のためのマルチタスク学習
- Authors: Yiren Wang, ChengXiang Zhai, Hany Hassan Awadalla
- Abstract要約: 本稿では,bitextデータ上での翻訳タスクと,モノリンガルデータ上での2つの認知タスクを併用してモデルを学習するマルチタスク学習フレームワークを提案する。
提案手法は,高リソース言語と低リソース言語の両方の翻訳品質を効果的に向上できることを示す。
- 参考スコア(独自算出の注目度): 32.81785430242313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While monolingual data has been shown to be useful in improving bilingual
neural machine translation (NMT), effectively and efficiently leveraging
monolingual data for Multilingual NMT (MNMT) systems is a less explored area.
In this work, we propose a multi-task learning (MTL) framework that jointly
trains the model with the translation task on bitext data and two denoising
tasks on the monolingual data. We conduct extensive empirical studies on MNMT
systems with 10 language pairs from WMT datasets. We show that the proposed
approach can effectively improve the translation quality for both high-resource
and low-resource languages with large margin, achieving significantly better
results than the individual bilingual models. We also demonstrate the efficacy
of the proposed approach in the zero-shot setup for language pairs without
bitext training data. Furthermore, we show the effectiveness of MTL over
pre-training approaches for both NMT and cross-lingual transfer learning NLU
tasks; the proposed approach outperforms massive scale models trained on single
task.
- Abstract(参考訳): 単言語データは多言語ニューラルマシン翻訳(nmt)の改善に有用であることが示されているが、多言語nmt(mnmt)システムのための単言語データを有効にかつ効率的に活用することは、あまり検討されていない領域である。
本研究では,bitextデータ上での翻訳タスクと,モノリンガルデータ上での2つの認知タスクとを併用したマルチタスク学習(MTL)フレームワークを提案する。
WMTデータセットから10言語対のMNMTシステムについて広範な実証的研究を行った。
提案手法は,高リソース言語と低リソース言語の両方の翻訳品質を高いマージンで効果的に改善でき,個々のバイリンガルモデルよりも優れた結果が得られることを示す。
また,bitext 学習データを持たない言語対に対するゼロショット設定における提案手法の有効性を示す。
さらに,nmtタスクと言語間伝達学習nluタスクの両方に対する事前学習アプローチに対するmtlの有効性を示す。
関連論文リスト
- Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Multilingual Multimodal Learning with Machine Translated Text [27.7207234512674]
英語のマルチモーダルデータの機械翻訳が、容易に利用できる多言語データの欠如を抑えるための効果的なプロキシとなるかどうかを考察する。
得られたデータセットからそのような翻訳を自動的に除去する2つの指標を提案する。
In experiment on five task across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning。
論文 参考訳(メタデータ) (2022-10-24T11:41:20Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
負の干渉を軽減するために,HLT-MT(High-Resource Language-specific Training)を用いた多言語翻訳モデルを提案する。
具体的には、まずマルチ言語モデルを高リソースペアでトレーニングし、デコーダの上部にある言語固有のモジュールを選択する。
HLT-MTは、高リソース言語から低リソース言語への知識伝達のために、利用可能なすべてのコーパスでさらに訓練されている。
論文 参考訳(メタデータ) (2022-07-11T14:33:13Z) - Towards the Next 1000 Languages in Multilingual Machine Translation:
Exploring the Synergy Between Supervised and Self-Supervised Learning [48.15259834021655]
数百の言語をカバーする多言語機械翻訳モデルを構築するための実践的なアプローチを提案する。
私たちは、異なる言語ペアのデータ可用性に応じて、教師付きと自己監督型の目的の混合を使用します。
この2つのトレーニングパラダイム間の相乗効果により、ゼロリソース設定で高品質な翻訳を生成できることを実証する。
論文 参考訳(メタデータ) (2022-01-09T23:36:44Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
MNMT(Multilingual Neural Machine Translation)は、複数の言語間の翻訳をサポートする単一のNMTモデルを訓練する。
MNMTモデルの性能は、様々な言語から知識を伝達することで、負の転送によって翻訳性能が低下するので、訓練で使用される言語の種類に大きく依存する。
本稿では,MNMTにおける階層的知識蒸留(HKD)手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T02:31:48Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Leveraging Monolingual Data with Self-Supervision for Multilingual
Neural Machine Translation [54.52971020087777]
モノリンガルデータを使用することで、マルチリンガルモデルにおける低リソース言語の翻訳品質が大幅に向上する。
自己監督は多言語モデルのゼロショット翻訳品質を改善する。
並列データやバックトランスレーションなしで、ro-en翻訳で最大33のBLEUを得る。
論文 参考訳(メタデータ) (2020-05-11T00:20:33Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z) - Balancing Training for Multilingual Neural Machine Translation [130.54253367251738]
多言語機械翻訳(MT)モデルは、複数の言語に翻訳/翻訳することができる。
標準的なプラクティスは、表現力を高めるために、リソースの少ない言語をアップサンプルすることである。
そこで本研究では,データスコアラによるトレーニングデータの重み付けを自動的に学習する手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T18:23:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。