論文の概要: PolicyQA: A Reading Comprehension Dataset for Privacy Policies
- arxiv url: http://arxiv.org/abs/2010.02557v1
- Date: Tue, 6 Oct 2020 09:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 06:48:41.438636
- Title: PolicyQA: A Reading Comprehension Dataset for Privacy Policies
- Title(参考訳): PolicyQA: プライバシポリシのための可読性データセット
- Authors: Wasi Uddin Ahmad and Jianfeng Chi and Yuan Tian and Kai-Wei Chang
- Abstract要約: 既存のWebサイトプライバシポリシ115のコーパスから算出した,25,017の理解スタイルの例を含むデータセットであるPolicyQAを提案する。
既存の2つのニューラルQAモデルを評価し、厳密な分析を行い、ポリシQAが提供する利点と課題を明らかにする。
- 参考スコア(独自算出の注目度): 77.79102359580702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy policy documents are long and verbose. A question answering (QA)
system can assist users in finding the information that is relevant and
important to them. Prior studies in this domain frame the QA task as retrieving
the most relevant text segment or a list of sentences from the policy document
given a question. On the contrary, we argue that providing users with a short
text span from policy documents reduces the burden of searching the target
information from a lengthy text segment. In this paper, we present PolicyQA, a
dataset that contains 25,017 reading comprehension style examples curated from
an existing corpus of 115 website privacy policies. PolicyQA provides 714
human-annotated questions written for a wide range of privacy practices. We
evaluate two existing neural QA models and perform rigorous analysis to reveal
the advantages and challenges offered by PolicyQA.
- Abstract(参考訳): プライバシーポリシーの文書は長く冗長です。
質問応答(QA)システムは、ユーザにとって重要で重要な情報を見つけるのに役立つ。
この領域における先行研究は、QAタスクが与えられたポリシー文書から最も関連性の高いテキストセグメントまたは文のリストを取得するものである。
反対に,ポリシー文書から短いテキストスパンをユーザに提供することで,長いテキストセグメントからターゲット情報を検索する負担を軽減できると主張する。
本稿では,既存のWebサイトプライバシポリシ115のコーパスから収集した25,017の理解スタイルの例を含むデータセットであるPolicyQAを提案する。
PolicyQAは、幅広いプライバシープラクティスのために書かれた714の人手による質問を提供する。
既存の2つのニューラルQAモデルを評価し、厳密な分析を行い、ポリシQAが提供する利点と課題を明らかにする。
関連論文リスト
- InfoLossQA: Characterizing and Recovering Information Loss in Text Simplification [60.10193972862099]
本研究は, 簡易化による情報損失を問合せ・問合せ形式で特徴づけ, 回復する枠組みを提案する。
QAペアは、読者がテキストの知識を深めるのに役立つように設計されている。
論文 参考訳(メタデータ) (2024-01-29T19:00:01Z) - PolicyGPT: Automated Analysis of Privacy Policies with Large Language
Models [41.969546784168905]
実際に使う場合、ユーザーは慎重に読むのではなく、Agreeボタンを直接クリックする傾向がある。
このプラクティスは、プライバシーの漏洩や法的問題のリスクにユーザをさらけ出す。
近年,ChatGPT や GPT-4 などの大規模言語モデル (LLM) が出現し,テキスト解析の新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-09-19T01:22:42Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
本研究では,ラベルのないポリシー文書から関連するテキストセグメントを抽出する検索モデルに基づくデータ拡張フレームワークを開発する。
拡張データの多様性と品質を改善するために,複数の事前学習言語モデル(LM)を活用し,ノイズ低減フィルタモデルでそれらをカスケードする。
PrivacyQAベンチマークの強化データを使用して、既存のベースラインを大きなマージン(10% F1)に高め、新しい最先端のF1スコアを50%達成します。
論文 参考訳(メタデータ) (2022-04-19T15:45:23Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - Privacy Policy Question Answering Assistant: A Query-Guided Extractive
Summarization Approach [18.51811191325837]
入力されたユーザクエリに応答して要約を抽出する自動プライバシポリシ質問応答アシスタントを提案する。
なぜなら、ユーザーはプライバシーに関する質問を、ポリシーの法的言語とは全く異なる言語で表現するからだ。
当社のパイプラインでは,プライバシQAデータセットのユーザクエリの89%に対して,回答を見つけています。
論文 参考訳(メタデータ) (2021-09-29T18:00:09Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - Intent Classification and Slot Filling for Privacy Policies [34.606121042708864]
PolicyIEは、ウェブサイトとモバイルアプリケーションの31のプライバシーポリシーにまたがる5,250の意図と11,788のスロットアノテーションからなるコーパスです。
本研究は,(1)連関タギングとして意図分類とスロット充填を定式化し,(2)シーケンス・ツー・シーケンス学習タスクとしてモデル化する,2つのニューラルネットワークアプローチをベースラインとして提案する。
論文 参考訳(メタデータ) (2021-01-01T00:44:41Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。