論文の概要: QADiscourse -- Discourse Relations as QA Pairs: Representation,
Crowdsourcing and Baselines
- arxiv url: http://arxiv.org/abs/2010.02815v1
- Date: Tue, 6 Oct 2020 15:25:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 07:03:56.703723
- Title: QADiscourse -- Discourse Relations as QA Pairs: Representation,
Crowdsourcing and Baselines
- Title(参考訳): QADiscourse - QAペアとしての談話関係 - 表現、クラウドソーシング、ベースライン
- Authors: Valentina Pyatkin, Ayal Klein, Reut Tsarfaty, Ido Dagan
- Abstract要約: 本稿では,会話関係をQAペアとして表現する新しい手法を提案する。
提案した表現に基づいて,新しい広範囲QADiscourseデータセットと,QADiscourse関係を予測するためのベースラインアルゴリズムを収集する。
- 参考スコア(独自算出の注目度): 22.103540930959237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discourse relations describe how two propositions relate to one another, and
identifying them automatically is an integral part of natural language
understanding. However, annotating discourse relations typically requires
expert annotators. Recently, different semantic aspects of a sentence have been
represented and crowd-sourced via question-and-answer (QA) pairs. This paper
proposes a novel representation of discourse relations as QA pairs, which in
turn allows us to crowd-source wide-coverage data annotated with discourse
relations, via an intuitively appealing interface for composing such questions
and answers. Based on our proposed representation, we collect a novel and
wide-coverage QADiscourse dataset, and present baseline algorithms for
predicting QADiscourse relations.
- Abstract(参考訳): 談話関係は2つの命題が相互にどのように関連しているかを記述し、それらを自動的に識別することは自然言語理解の不可欠な部分である。
しかし、談話関係の注釈は一般的に専門的な注釈者を必要とする。
近年,質問・回答(QA)ペアを通じて,文の意味的側面を表現し,クラウドソース化している。
本稿では,QAペアとしての談話関係の表現を新たに提案し,これらの質問や回答を直感的に表現するインタフェースを通じて,談話関係に注釈を付けた広範囲データをクラウドソースすることを可能にする。
提案した表現に基づいて,新しい広範囲QADiscourseデータセットと,QADiscourse関係を予測するためのベースラインアルゴリズムを収集する。
関連論文リスト
- ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal,
Causal, and Discourse Relations [52.26802326949116]
対話型大規模言語モデルChatGPTの性能を,文間関係に基づいて定量的に評価する。
ChatGPTは因果関係の検出と推論において極めて優れた能力を示す。
既存の明示的な談話接続物との談話関係の大多数を特定できるが、暗黙的な談話関係は依然として恐ろしい課題である。
論文 参考訳(メタデータ) (2023-04-28T13:14:36Z) - Discourse Analysis via Questions and Answers: Parsing Dependency
Structures of Questions Under Discussion [57.43781399856913]
この研究は、談話分析にQUD(Language framework of Questions Under discussion)を採用する。
我々は、文間の関係を、徹底的なきめ細かい質問とは対照的に、自由形式の質問として特徴づける。
完全文書上の質問の依存関係構造を導出する第一種QUDを開発する。
論文 参考訳(メタデータ) (2022-10-12T03:53:12Z) - QASem Parsing: Text-to-text Modeling of QA-based Semantics [19.42681342441062]
本稿では,QA-SRL,QANom,QADiscourseの3つの意味的タスクについて考察する。
最初に統合されたQASem解析ツールをリリースし、下流アプリケーションに実用的です。
論文 参考訳(メタデータ) (2022-05-23T15:56:07Z) - Relation-Guided Pre-Training for Open-Domain Question Answering [67.86958978322188]
複雑なオープンドメイン問題を解決するためのRGPT-QA(Relation-Guided Pre-Training)フレームワークを提案する。
RGPT-QAは, 自然質問, TriviaQA, WebQuestionsにおいて, Exact Matchの精度が2.2%, 2.4%, 6.3%向上したことを示す。
論文 参考訳(メタデータ) (2021-09-21T17:59:31Z) - Generating Self-Contained and Summary-Centric Question Answer Pairs via
Differentiable Reward Imitation Learning [7.2745835227138045]
本稿では,質問応答対(QAペア)を自己完結型,要約型,長さ制約型,記事要約型で生成するモデルを提案する。
このデータセットは、回答として要約を生成するQAペア生成モデルを学ぶために使用される。
論文 参考訳(メタデータ) (2021-09-10T06:34:55Z) - DAGN: Discourse-Aware Graph Network for Logical Reasoning [83.8041050565304]
本論文では,テキストの対話構造に依存した対話型グラフネットワーク (DAGN) を提案する。
本モデルは,基本談話単位(EDU)と談話関係を持つグラフとして談話情報を符号化し,下流QAタスクのためのグラフネットワークを介して談話認識特徴を学習する。
論文 参考訳(メタデータ) (2021-03-26T09:41:56Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
質問に対して適切な回答を得るための文脈言語モデルを提案する。
また、ドメイン固有の単語間のトポロジ関連関係を教師なしの方法で活用することについても検討する。
提案手法のバリエーションを,公開可能な中国語FAQデータセット上で評価し,さらに大規模質問マッチングタスクに適用し,コンテキスト化する。
論文 参考訳(メタデータ) (2020-10-27T05:03:34Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - Leveraging Semantic Parsing for Relation Linking over Knowledge Bases [80.99588366232075]
本稿では,AMRを用いた意味解析と遠隔監視を利用した関係リンクフレームワークであるSlingを提案する。
Slingは複数の関係リンクアプローチを統合し、言語的手がかり、豊かな意味表現、知識ベースからの情報などの補完的な信号をキャプチャする。
QALD-7, QALD-9, LC-QuAD 1.0という3つのKBQAデータセットを用いた関係リンク実験により, 提案手法が全てのベンチマークで最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2020-09-16T14:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。