On-the-fly ab initio semiclassical evaluation of third-order response
functions for two-dimensional electronic spectroscopy
- URL: http://arxiv.org/abs/2010.03044v3
- Date: Mon, 9 Nov 2020 22:23:51 GMT
- Title: On-the-fly ab initio semiclassical evaluation of third-order response
functions for two-dimensional electronic spectroscopy
- Authors: Tomislav Begu\v{s}i\'c and Ji\v{r}\'i Van\'i\v{c}ek
- Abstract summary: We use the single-trajectory semiclassical thawed Gaussian approximation to evaluate two-dimensional electronic spectra.
We find that in this molecule, the anharmonicity effects are weak, whereas the Duschinsky rotation and the changes in the mode frequencies must be included in accurate simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ab initio computation of two-dimensional electronic spectra is an expanding
field, whose goal is improving upon simple, few-dimensional models often
employed to explain experiments. Here, we propose an accurate and
computationally affordable approach, based on the single-trajectory
semiclassical thawed Gaussian approximation, to evaluate two-dimensional
electronic spectra. Importantly, the method is exact for arbitrary harmonic
potentials with mode displacement, changes in the mode frequencies, and
inter-mode coupling (Duschinsky effect), but can also account partially for the
anharmonicity of the involved potential energy surfaces. We test its accuracy
on a set of model Morse potentials and use it to study anharmonicity and
Duschinsky effects on the linear and two-dimensional electronic spectra of
phenol. We find that in this molecule, the anharmonicity effects are weak,
whereas the Duschinsky rotation and the changes in the mode frequencies must be
included in accurate simulations. In contrast, the widely used displaced
harmonic oscillator model captures only the basic physics of the problem but
fails to reproduce the correct vibronic lineshape.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Single vibronic level fluorescence spectra from Hagedorn wavepacket dynamics [0.0]
We develop an efficient algorithm to compute the overlaps between two Hagedorn wavepackets.
We study the effects of displacement, distortion (squeezing), and Duschinsky rotation on SVL spectra.
arXiv Detail & Related papers (2024-03-01T14:58:07Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Vibrational strong coupling in liquid water from cavity molecular
dynamics [0.0]
We show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model.
We conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum.
arXiv Detail & Related papers (2023-05-04T10:33:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Applicability of the thawed Gaussian wavepacket dynamics to the
calculation of vibronic spectra of molecules with double-well potential
energy surfaces [0.0]
We show that a semiclassical wavepacket approach is more robust and to provide more accurate spectra than the conventional harmonic approximation.
The method is efficient and requires only a single classical ab initio molecular dynamics trajectory.
arXiv Detail & Related papers (2022-01-14T20:30:41Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Finite-temperature, anharmonicity, and Duschinsky effects on the
two-dimensional electronic spectra from ab initio thermo-field Gaussian
wavepacket dynamics [0.0]
We use the concept of thermo-field dynamics to derive an exact finite-temperature expression that lends itself to an intuitive wavepacket-based interpretation.
An efficient method for computing finite-temperature two-dimensional spectra is obtained by combining the exact thermo-field dynamics approach with the thawed Gaussian approximation for the wavepacket dynamics.
arXiv Detail & Related papers (2021-01-28T19:56:02Z) - Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic
Spectroscopy Beyond the Condon Approximation. The Case of Azulene [0.0]
We study the photophysics and spectroscopy of azulene and other non-conventional molecules.
We develop a systematic, general, and efficient computational approach combining semiclassical dynamics of nuclei with ab initio electronic structure.
We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg--Teller, and mode-mixing effects.
arXiv Detail & Related papers (2020-01-23T09:08:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.