Quantum parity conservation in planar quantum electrodynamics
- URL: http://arxiv.org/abs/2010.03125v2
- Date: Mon, 12 Oct 2020 23:24:59 GMT
- Title: Quantum parity conservation in planar quantum electrodynamics
- Authors: O.M. Del Cima, D.H.T. Franco, L.S. Lima, E.S. Miranda
- Abstract summary: Quantum parity conservation is verified at all orders in perturbation theory for a massless parity-even $U(1)times U(1)$ planar quantum electrodynamics (QED$_3$) model.
The presence of two massless fermions requires the Lowenstein-Zimmermann (LZ) subtraction scheme, in the framework of the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum parity conservation is verified at all orders in perturbation theory
for a massless parity-even $U(1)\times U(1)$ planar quantum electrodynamics
(QED$_3$) model. The presence of two massless fermions requires the
Lowenstein-Zimmermann (LZ) subtraction scheme, in the framework of the
Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization method,
in order to subtract the infrared divergences induced by the ultraviolet
subtractions at 1- and 2-loops, however thanks to the superrenormalizability of
the model the ultraviolet divergences are bounded up to 2-loops. Finally, it is
proved that the BPHZL renormalization method preserves parity for the model
taken into consideration, contrary to what happens to the ordinary massless
parity-even $U(1)$ QED$_3$.
Related papers
- Continuous spontaneous localization from the white-noise limit of spontaneous unitarity violation [0.0]
Colored noise driven collapse theories extend the equilibrium description of spontaneous symmetry breaking to spontaneous violations of unitarity.
We show that this limit coincides with a subclass of continuous spontaneous localization (CSL) models.
We also extend this model to a form that can be applied to any initial state.
arXiv Detail & Related papers (2024-05-02T08:14:43Z) - Quantum theory of wave mixing on a two-level system [0.0]
We apply the scattering matrix formalism to wave mixing on a quantum two-level system.
We show that the spectrum observed in the experiment is the result of bosonic stimulated scattering of photons from one mode of the bichromatic drive to another and vice versa.
arXiv Detail & Related papers (2023-09-04T08:52:00Z) - Charge fluctuation and charge-resolved entanglement in monitored quantum
circuit with $U(1)$ symmetry [0.0]
We study a (1+1)-dimensional quantum circuit consisting of Haar-random unitary gates and projective measurements.
We find a phase transition between two phases characterized by bipartite charge fluctuation growing with the subsystem size or staying constant.
arXiv Detail & Related papers (2022-10-28T09:25:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Variational Quantum Simulation of Valence-Bond Solids [0.0]
We introduce a hybrid quantum-classical variational algorithm to simulate ground-state phase diagrams of frustrated quantum spin models.
We benchmark the method against the J1-J2 Heisenberg model on the square lattice and uncover its phase diagram.
Our results show that the convergence of the algorithm is guided by the onset of long-range order, opening a promising route to synthetically realize frustrated quantum magnets.
arXiv Detail & Related papers (2022-01-07T17:05:14Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.