論文の概要: WDN: A Wide and Deep Network to Divide-and-Conquer Image
Super-resolution
- arxiv url: http://arxiv.org/abs/2010.03199v1
- Date: Wed, 7 Oct 2020 06:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 00:06:56.618288
- Title: WDN: A Wide and Deep Network to Divide-and-Conquer Image
Super-resolution
- Title(参考訳): WDN:超高解像度画像分割のための広帯域深層ネットワーク
- Authors: Vikram Singh (1), Anurag Mittal (1) ((1) Indian Institute of
Technology - Madras)
- Abstract要約: 分割と征服は確立されたアルゴリズム設計パラダイムであり、様々な問題を効率的に解くことが証明されている。
本稿では,画像超解像の問題を複数のサブプロブレムに分割し,ニューラルネットワークの助けを借りて解く手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Divide and conquer is an established algorithm design paradigm that has
proven itself to solve a variety of problems efficiently. However, it is yet to
be fully explored in solving problems with a neural network, particularly the
problem of image super-resolution. In this work, we propose an approach to
divide the problem of image super-resolution into multiple sub-problems and
then solve/conquer them with the help of a neural network. Unlike a typical
deep neural network, we design an alternate network architecture that is much
wider (along with being deeper) than existing networks and is specially
designed to implement the divide-and-conquer design paradigm with a neural
network. Additionally, a technique to calibrate the intensities of feature map
pixels is being introduced. Extensive experimentation on five datasets reveals
that our approach towards the problem and the proposed architecture generate
better and sharper results than current state-of-the-art methods.
- Abstract(参考訳): 分割と克服は確立されたアルゴリズム設計パラダイムであり、様々な問題を解決することが証明されている。
しかし、ニューラルネットワークの問題解決、特に画像超解像の問題について、まだ完全には研究されていない。
本研究では,画像超解像の問題を複数のサブプロブレムに分割し,ニューラルネットワークの助けを借りて解・解答する手法を提案する。
一般的なディープニューラルネットワークとは異なり、既存のネットワークよりもずっと広い(さらに深い)代替ネットワークアーキテクチャを設計し、ニューラルネットワークによる分割結合設計パラダイムを実装するために特別に設計しています。
また,特徴マップ画素の強度を校正する手法も導入されている。
5つのデータセットを広範囲に実験した結果、問題に対する我々のアプローチと提案されたアーキテクチャは、現在の最先端の方法よりも優れた、より鋭い結果を生み出すことがわかった。
関連論文リスト
- Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
画像超解像のための適応畳み込みニューラルネットワーク(ADSRNet)を提案する。
上層ネットワークは、コンテキスト情報、カーネルマッピングの健全な情報関係、浅い層と深い層の関連性を高めることができる。
下位のネットワークは対称アーキテクチャを使用して、異なるレイヤの関係を強化し、より構造的な情報をマイニングする。
論文 参考訳(メタデータ) (2024-02-24T03:44:06Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Image Super-resolution with An Enhanced Group Convolutional Neural
Network [102.2483249598621]
学習能力の強いCNNは、超解像問題を解くために広く選択されている。
浅層構造を持つ超解像群CNN(ESRGCNN)を提案する。
ESRGCNNは、SISRの性能、複雑さ、実行速度、画質評価およびSISRの視覚効果の観点から、最先端技術を上回っていると報告されている。
論文 参考訳(メタデータ) (2022-05-29T00:34:25Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Cascade Convolutional Neural Network for Image Super-Resolution [15.650515790147189]
画像超解像のためのカスケード畳み込みニューラルネットワーク(CSRCNN)を提案する。
異なるスケールのイメージを同時にトレーニングすることができ、学習されたネットワークは、異なるスケールのイメージに存在する情報をフル活用することができる。
論文 参考訳(メタデータ) (2020-08-24T11:34:03Z) - On the unreasonable effectiveness of CNNs [7.673853485227739]
畳み込みニューラルネットワーク(CNN)を用いた深層学習法は、事実上全ての画像問題に適用されている。
画像と画像の問題を解決するためのベースラインCNNの能力に上限を付けるために、我々は広く使われている標準オフザシェルフネットワークアーキテクチャ(U-Net)をノイズデータからXOR復号化の「逆問題」に適用し、許容可能な結果を示した。
論文 参考訳(メタデータ) (2020-07-29T11:16:20Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z) - Super-resolution of multispectral satellite images using convolutional
neural networks [0.0]
本稿では,高分解能マルチスペクトルと高分解能パンシャーペン画像タイルのペアを用いた最先端CNNの訓練手法を提案する。
得られた品質指標は,処理した画像の情報内容を改善する方法を示している。
論文 参考訳(メタデータ) (2020-02-03T07:06:36Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
ディープラーニング手法は、低解像度の入力から高解像度の出力へのエンドツーエンドのマッピングを学習するために、トレーニングデータに依存する。
本稿では,スパース事前を組み込んだマルチモーダル深層学習設計を提案し,他の画像モダリティからの情報をネットワークアーキテクチャに効果的に統合する。
提案手法は,サイド情報を用いた畳み込みスパース符号化の反復的アルゴリズムに類似した,新しい展開演算子に依存している。
論文 参考訳(メタデータ) (2020-01-21T14:41:53Z) - Learned Multi-View Texture Super-Resolution [76.82725815863711]
仮想3Dオブジェクトの高解像度テクスチャマップを,そのオブジェクトの低解像度画像の集合から作成できる超高解像度手法を提案する。
本アーキテクチャは, (i) 重なり合うビューの冗長性に基づくマルチビュー超解像の概念と, (ii) 高分解能画像構造の学習先行に基づくシングルビュー超解像の概念を統一する。
論文 参考訳(メタデータ) (2020-01-14T13:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。