論文の概要: SPPL: Probabilistic Programming with Fast Exact Symbolic Inference
- arxiv url: http://arxiv.org/abs/2010.03485v3
- Date: Fri, 11 Jun 2021 12:21:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 23:03:26.017562
- Title: SPPL: Probabilistic Programming with Fast Exact Symbolic Inference
- Title(参考訳): SPPL: 高速な記号推論による確率的プログラミング
- Authors: Feras A. Saad, Martin C. Rinard, Vikash K. Mansinghka
- Abstract要約: Sum-Product Probabilistic Language (SPPL)は、幅広い確率的推論クエリに対して正確なソリューションを提供する。
SPPLは確率的プログラムを、新しい記号表現と関連する意味領域である要約生成表現に変換する。
モジュールアーキテクチャでSPPLのプロトタイプを実装し,システム対象のベンチマークで評価する。
- 参考スコア(独自算出の注目度): 2.371061885439857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the Sum-Product Probabilistic Language (SPPL), a new probabilistic
programming language that automatically delivers exact solutions to a broad
range of probabilistic inference queries. SPPL translates probabilistic
programs into sum-product expressions, a new symbolic representation and
associated semantic domain that extends standard sum-product networks to
support mixed-type distributions, numeric transformations, logical formulas,
and pointwise and set-valued constraints. We formalize SPPL via a novel
translation strategy from probabilistic programs to sum-product expressions and
give sound exact algorithms for conditioning on and computing probabilities of
events. SPPL imposes a collection of restrictions on probabilistic programs to
ensure they can be translated into sum-product expressions, which allow the
system to leverage new techniques for improving the scalability of translation
and inference by automatically exploiting probabilistic structure. We implement
a prototype of SPPL with a modular architecture and evaluate it on benchmarks
the system targets, showing that it obtains up to 3500x speedups over
state-of-the-art symbolic systems on tasks such as verifying the fairness of
decision tree classifiers, smoothing hidden Markov models, conditioning
transformed random variables, and computing rare event probabilities.
- Abstract(参考訳): 我々は,確率的問合せに正確な解を自動的に提示する新しい確率的プログラミング言語であるsum-product probabilistic language (sppl)を提案する。
SPPLは確率的プログラムを、新しい記号表現と関連する意味領域である和積表現に変換し、混合型分布、数値変換、論理式、および点次および集合値制約をサポートする。
我々は,確率的プログラムから和生成表現への新しい翻訳戦略を通じてspplを定式化し,イベントの条件付けと計算のための正確なアルゴリズムを与える。
SPPLは、確率的プログラムに制約を課し、それらが総和積表現に変換できることを保証し、システムは確率的構造を自動で活用することで、翻訳と推論のスケーラビリティを改善するための新しい技術を活用することができる。
我々は,SPPLのプロトタイプをモジュールアーキテクチャで実装し,システム目標のベンチマークで評価し,決定木分類器の公平性検証,隠れマルコフモデルの平滑化,変換されたランダム変数の条件付け,まれな事象確率の計算などのタスクにおいて,最先端のシンボルシステムの最大3500倍の高速化が得られることを示す。
関連論文リスト
- Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation [73.58618024960968]
人間のシーケンシャルな意思決定過程をエミュレートするエージェントとして、大きな言語モデル(LLM)を採用する研究が増えている。
このことは、確率分布を理解するためにLLMエージェントの容量に関する好奇心を喚起する。
分析の結果, LLM エージェントは確率を理解できるが, 確率サンプリングに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-04-13T16:59:28Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
本稿では、NPP(Neural-Probabilistic Predicates)と解集合プログラミング(ASP)を介して統合された論理プログラムからなる新しいDPPLであるSLASHを紹介する。
予測性能を犠牲にすることなく、推論を高速化し、(地上)プログラムの無意味な部分を抜粋する方法を示す。
我々は、MNIST追加のベンチマークタスクやVQA(Visual Question Answering)など、様々なタスクでSLASHを評価する。
論文 参考訳(メタデータ) (2023-06-14T09:45:29Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Marginal Inference queries in Hidden Markov Models under context-free
grammar constraints [0.348097307252416]
隠れモデル(HMM)における文脈自由文法(CFG)の可能性の計算問題に対処する。
問題は NP-Hard であり、CFG が 2 以下のあいまいさの次数を持つという約束があるにもかかわらずである。
次に,不明瞭なCFGの場合の確率を近似するために,完全ランダム化近似法を提案する。
論文 参考訳(メタデータ) (2022-06-26T12:44:18Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - flip-hoisting: Exploiting Repeated Parameters in Discrete Probabilistic
Programs [25.320181572646135]
本稿では、離散確率的プログラムにおいて繰り返しパラメータを分解し、推論性能を向上させるプログラム解析とそれに伴う最適化について述べる。
既存の確率型プログラミング言語でフリップホスティングを実装し,推論性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-10-19T22:04:26Z) - Probabilistic Generating Circuits [50.98473654244851]
効率的な表現のための確率的生成回路(PGC)を提案する。
PGCは、非常に異なる既存モデルを統一する理論的なフレームワークであるだけでなく、現実的なデータをモデル化する大きな可能性も示している。
我々はPCとDPPの単純な組み合わせによって簡単に仮定されない単純なPGCのクラスを示し、一連の密度推定ベンチマークで競合性能を得る。
論文 参考訳(メタデータ) (2021-02-19T07:06:53Z) - Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program
Analysis [9.204612164524947]
確率論的ソフトウェア分析は、プログラムの実行中に発生するターゲットイベントの確率を定量化することを目的としている。
本稿では,SYMbolic Parallel Adaptive Importance Sampling (SYMPAIS)を提案する。
論文 参考訳(メタデータ) (2020-10-10T17:39:12Z) - Transforming Probabilistic Programs for Model Checking [0.0]
確率的プログラムに静的解析を適用し、2つの重要なモデル検査手法の大部分を自動化する。
本手法は,密度関数を指定する確率的プログラムを,効率的なフォワードサンプリング形式に変換する。
本稿では,一般的なStan確率型プログラミング言語を対象とする実装を提案する。
論文 参考訳(メタデータ) (2020-08-21T21:06:34Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
本稿では,プログラムと仕様の両方で合成データ分布のバイアスを制御し,評価するための新しい手法を提案する。
そこで我々は,Karel DSLと小さなCalculator DSLを用いて,これらの分布上でのディープネットワークのトレーニングにより,分散一般化性能が向上することが実証された。
論文 参考訳(メタデータ) (2019-12-27T21:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。