論文の概要: Semantic Probabilistic Layers for Neuro-Symbolic Learning
- arxiv url: http://arxiv.org/abs/2206.00426v1
- Date: Wed, 1 Jun 2022 12:02:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 15:45:05.245379
- Title: Semantic Probabilistic Layers for Neuro-Symbolic Learning
- Title(参考訳): セマンティック確率層によるニューロ・シンボリック学習
- Authors: Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio
Vergari
- Abstract要約: 我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
- 参考スコア(独自算出の注目度): 83.25785999205932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We design a predictive layer for structured-output prediction (SOP) that can
be plugged into any neural network guaranteeing its predictions are consistent
with a set of predefined symbolic constraints. Our Semantic Probabilistic Layer
(SPL) can model intricate correlations, and hard constraints, over a structured
output space all while being amenable to end-to-end learning via maximum
likelihood. SPLs combine exact probabilistic inference with logical reasoning
in a clean and modular way, learning complex distributions and restricting
their support to solutions of the constraint. As such, they can faithfully, and
efficiently, model complex SOP tasks beyond the reach of alternative
neuro-symbolic approaches. We empirically demonstrate that SPLs outperform
these competitors in terms of accuracy on challenging SOP tasks including
hierarchical multi-label classification, pathfinding and preference learning,
while retaining perfect constraint satisfaction.
- Abstract(参考訳): 我々は、ニューラルネットワークに差し込むことができる構造化出力予測(SOP)の予測層を設計し、予測が予め定義されたシンボリック制約のセットと一致していることを保証する。
セマンティクス確率層(spl)は、構造的なアウトプット空間上で複雑な相関やハード制約をモデル化できると同時に、最大確率でエンドツーエンドの学習に適しています。
SPLは正確な確率的推論と論理的推論をクリーンでモジュラーな方法で組み合わせ、複雑な分布を学習し、制約の解へのサポートを制限する。
そのため、彼らは、他のニューロシンボリックアプローチの範囲を超えた複雑なSOPタスクを忠実かつ効率的にモデル化することができる。
我々は,SPL が,階層的マルチラベル分類,パスフィンディング,選好学習など,SOP の課題において,完全な制約満足度を維持しながら,これらの課題の精度において,競争相手よりも優れていることを実証的に実証した。
関連論文リスト
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
制約のある最適化問題は、在庫管理電力グリッドのような様々なエンジニアリングシステムで発生する。
本研究では,ベイジアンネットワーク(BNN)を用いて,制限されたデータと制限されたモデル時間の下での制約付き最適化問題の解法を提案する。
提案手法は,従来のBNNおよびディープニューラルネットワーク(DNN)アーキテクチャよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-04T02:10:20Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - Neural Conditional Probability for Inference [22.951644463554352]
NCP(Neural Conditional Probability)は,条件分布を学習するための演算子理論的手法である。
ニューラルネットワークの強力な近似能力を活用することで、我々は様々な複雑な確率分布を効率的に扱うことができる。
実験の結果,本手法は単純なマルチ層パーセプトロン(MLP)と2つの隠蔽層とGELUアクティベーションを用いて,先行する手法と一致または一致していることがわかった。
論文 参考訳(メタデータ) (2024-07-01T10:44:29Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - dPASP: A Comprehensive Differentiable Probabilistic Answer Set
Programming Environment For Neurosymbolic Learning and Reasoning [0.0]
本稿では,ニューロシンボリック推論のための新しい宣言型論理プログラミングフレームワークdPASPを提案する。
非決定論的・矛盾的・不完全・統計的知識を表現できる確率論的論理プログラムのセマンティクスについて論じる。
次に、いくつかのサンプルプログラムとともに、言語での推論と学習をサポートする実装されたパッケージについて説明する。
論文 参考訳(メタデータ) (2023-08-05T19:36:58Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
本稿では、NPP(Neural-Probabilistic Predicates)と解集合プログラミング(ASP)を介して統合された論理プログラムからなる新しいDPPLであるSLASHを紹介する。
予測性能を犠牲にすることなく、推論を高速化し、(地上)プログラムの無意味な部分を抜粋する方法を示す。
我々は、MNIST追加のベンチマークタスクやVQA(Visual Question Answering)など、様々なタスクでSLASHを評価する。
論文 参考訳(メタデータ) (2023-06-14T09:45:29Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。