論文の概要: Characterizing the Value of Information in Medical Notes
- arxiv url: http://arxiv.org/abs/2010.03574v2
- Date: Wed, 9 Dec 2020 17:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 21:43:09.440017
- Title: Characterizing the Value of Information in Medical Notes
- Title(参考訳): 医療用ノートにおける情報の価値評価
- Authors: Chao-Chun Hsu, Shantanu Karnwal, Sendhil Mullainathan, Ziad Obermeyer,
Chenhao Tan
- Abstract要約: 我々は,医療ノートにおける情報の価値を特徴付けるために,寛容予測と院内死亡予測という2つの予測タスクを使用する。
概して、医療ノートは、読み出し予測において構造化情報に対して追加の予測力しか提供しないことを示す。
選択した価値情報に基づいてトレーニングされたモデルは、読み出し予測のためのトークンの6.8%に過ぎず、予測性能がさらに向上することを示した。
- 参考スコア(独自算出の注目度): 13.458501607243697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models depend on the quality of input data. As electronic
health records are widely adopted, the amount of data in health care is
growing, along with complaints about the quality of medical notes. We use two
prediction tasks, readmission prediction and in-hospital mortality prediction,
to characterize the value of information in medical notes. We show that as a
whole, medical notes only provide additional predictive power over structured
information in readmission prediction. We further propose a probing framework
to select parts of notes that enable more accurate predictions than using all
notes, despite that the selected information leads to a distribution shift from
the training data ("all notes"). Finally, we demonstrate that models trained on
the selected valuable information achieve even better predictive performance,
with only 6.8% of all the tokens for readmission prediction.
- Abstract(参考訳): 機械学習モデルは入力データの品質に依存する。
電子的な健康記録が広く採用されるにつれて、医療におけるデータの量が増え、医療記録の質に関する苦情も増えている。
医療記録における情報の価値を特徴付けるために,読み出し予測と病院内死亡予測という2つの予測課題を用いた。
概して、医療ノートは読み出し予測における構造化情報に対するさらなる予測力しか提供していない。
さらに,選択した情報がトレーニングデータ(全音符)からの分布シフトにつながるにもかかわらず,すべての音符よりも正確な予測を可能にする音符の一部を選択するための探索フレームワークを提案する。
最後に,選択された有価情報に基づいてトレーニングされたモデルが,読み出し予測のためのトークンの6.8%しか持たず,さらに優れた予測性能を達成できることを実証する。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
そこで我々は,未計画の病院入退院を予測するための,新しい,解釈可能な深層学習フレームワークを提案する。
実際のデータを用いて,30日と180日以内に病院入退院の2つの予測課題について,本システムの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-16T08:48:52Z) - Making the Most Out of the Limited Context Length: Predictive Power
Varies with Clinical Note Type and Note Section [70.37720062263176]
本研究では,高い予測力で区間を解析する枠組みを提案する。
MIMIC-IIIを用いて,(1)看護用音符と退院用音符とでは予測電力分布が異なること,(2)文脈長が大きい場合の音符の組み合わせにより性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-13T20:04:05Z) - MedLens: Improve Mortality Prediction Via Medical Signs Selecting and
Regression [4.43322868663347]
データ品質の問題については文献では議論されていない。
我々はMEDLENSを設計し、統計による自動バイタルメディカルサイン選択手法と、高損失率時系列に対する柔軟なアプローチを用いて設計した。
精度は 0.96 AUC-ROC と 0.81 AUC-PR で、これは以前のベンチマークを超えている。
論文 参考訳(メタデータ) (2023-05-19T15:28:02Z) - Assessing mortality prediction through different representation models
based on concepts extracted from clinical notes [2.707154152696381]
埋め込みの学習は、音符をそれに匹敵する形式に変換する方法である。
トランスフォーマーベースの表現モデルは、最近大きな飛躍を遂げた。
病院死亡予測の課題において,学習した埋め込みベクターの有用性を評価する実験を行った。
論文 参考訳(メタデータ) (2022-07-22T04:34:33Z) - Label-dependent and event-guided interpretable disease risk prediction
using EHRs [8.854691034104071]
本稿では,ラベル依存型,事象誘導型リスク予測モデル(LERP)を提案する。
我々は、リスクラベルの名前にセマンティックに類似した医療メモからの単語に注意を向けるラベル依存メカニズムを採用する。
臨床イベントは患者の健康状態も示すことができるため,このモデルではイベントからの情報を活用して,医療記録のイベント誘導表現を生成する。
論文 参考訳(メタデータ) (2022-01-18T07:24:28Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。