論文の概要: SRLGRN: Semantic Role Labeling Graph Reasoning Network
- arxiv url: http://arxiv.org/abs/2010.03604v2
- Date: Wed, 18 Nov 2020 15:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 23:30:02.666905
- Title: SRLGRN: Semantic Role Labeling Graph Reasoning Network
- Title(参考訳): SRLGRN:Semantic Role Labeling Graph Reasoning Network
- Authors: Chen Zheng, Parisa Kordjamshidi
- Abstract要約: この研究は、マルチホップ質問応答(QA)に対する学習と推論の課題を扱う。
本稿では,文の意味構造に基づくグラフ推論ネットワークを提案し,段落間の推論経路を学習する。
提案手法は,最近の最先端モデルと比較して,HotpotQAトラクタ設定ベンチマークにおける競合性能を示す。
- 参考スコア(独自算出の注目度): 22.06211725256875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work deals with the challenge of learning and reasoning over multi-hop
question answering (QA). We propose a graph reasoning network based on the
semantic structure of the sentences to learn cross paragraph reasoning paths
and find the supporting facts and the answer jointly. The proposed graph is a
heterogeneous document-level graph that contains nodes of type sentence
(question, title, and other sentences), and semantic role labeling sub-graphs
per sentence that contain arguments as nodes and predicates as edges.
Incorporating the argument types, the argument phrases, and the semantics of
the edges originated from SRL predicates into the graph encoder helps in
finding and also the explainability of the reasoning paths. Our proposed
approach shows competitive performance on the HotpotQA distractor setting
benchmark compared to the recent state-of-the-art models.
- Abstract(参考訳): この研究は、マルチホップ質問応答(QA)に対する学習と推論の課題を扱う。
本稿では,文の意味的構造に基づくグラフ推論ネットワークを提案する。
提案したグラフは、タイプ文(クエクション、タイトル、その他の文)のノードを含む異質な文書レベルグラフであり、引数をノードとして含み、エッジとして述語する文ごとにサブグラフをラベル付けするセマンティックロールである。
SRLから派生した引数の型、引数のフレーズ、エッジの意味をグラフエンコーダに組み込むことは、推論パスの発見と説明可能性にも役立ちます。
提案手法は,最近の最先端モデルと比較して,HotpotQAトラクタ設定ベンチマークにおける競合性能を示す。
関連論文リスト
- Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
本研究では,単語グラフニューラルネットワーク(DGoW-GNN)によるテキストの識別手法を提案する。
本稿では,GNNとシーケンスモデルを組み合わせたグラフベースのテキスト分類の新しいモデルを提案する。
提案手法を7つのベンチマークデータセットで評価し,いくつかの最先端ベースラインモデルにより性能が向上していることを確認した。
論文 参考訳(メタデータ) (2024-10-27T15:14:06Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
我々は,テキストや知識グラフ,テーブル,インフォボックスといった異質な情報源から収集された証拠について,文脈における質問の理解と推論の課題を組み合わせた会話型質問応答タスクに着目する。
提案手法はグラフ構造表現を用いて質問とその文脈に関する情報を集約する。
論文 参考訳(メタデータ) (2024-06-14T13:28:03Z) - Towards Graph-hop Retrieval and Reasoning in Complex Question Answering
over Textual Database [15.837457557803507]
Graph-Hopは、複雑な質問応答における新しいマルチチェーンとマルチホップ検索および推論パラダイムである。
我々はReasonGraphQAと呼ばれる新しいベンチマークを構築し、複雑な問題に対して明確できめ細かいエビデンスグラフを提供する。
論文 参考訳(メタデータ) (2023-05-23T16:28:42Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
グラフ上の部分グラフ同型カウントは重要な問題である。
本稿では,グラフアイソモーフィズムカウントのための新しいグラフニューラルネットワークであるCount-GNNを提案する。
論文 参考訳(メタデータ) (2023-02-07T05:32:11Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
我々は,質問文,質問文,回答文のペア間のスコアを計算するための最先端(SOTA)モデルを訓練し,統合する。
オンライン推論は、目に見えないクエリのAS2タスクを解決するために実行される。
論文 参考訳(メタデータ) (2022-02-16T05:59:53Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - DAGN: Discourse-Aware Graph Network for Logical Reasoning [83.8041050565304]
本論文では,テキストの対話構造に依存した対話型グラフネットワーク (DAGN) を提案する。
本モデルは,基本談話単位(EDU)と談話関係を持つグラフとして談話情報を符号化し,下流QAタスクのためのグラフネットワークを介して談話認識特徴を学習する。
論文 参考訳(メタデータ) (2021-03-26T09:41:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。