論文の概要: Multivariate Temporal Autoencoder for Predictive Reconstruction of Deep
Sequences
- arxiv url: http://arxiv.org/abs/2010.03661v1
- Date: Wed, 7 Oct 2020 21:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 23:56:40.376283
- Title: Multivariate Temporal Autoencoder for Predictive Reconstruction of Deep
Sequences
- Title(参考訳): 多変量時間オートエンコーダによる深部シーケンスの予測
- Authors: Jakob Aungiers
- Abstract要約: 時系列の予測とモデリングは、実世界のデータセットにおいて挑戦的な試みであることが証明されている。
2つの重要な問題は、データの多次元性と、遅延出力信号を形成する独立次元の相互作用である。
本稿では,データウィンドウの潜在状態ベクトル表現をモデル化することにより,上記の問題に対処するためのマルチブランチディープニューラルネットワーク手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series sequence prediction and modelling has proven to be a challenging
endeavor in real world datasets. Two key issues are the multi-dimensionality of
data and the interaction of independent dimensions forming a latent output
signal, as well as the representation of multi-dimensional temporal data inside
of a predictive model. This paper proposes a multi-branch deep neural network
approach to tackling the aforementioned problems by modelling a latent state
vector representation of data windows through the use of a recurrent
autoencoder branch and subsequently feeding the trained latent vector
representation into a predictor branch of the model. This model is henceforth
referred to as Multivariate Temporal Autoencoder (MvTAe). The framework in this
paper utilizes a synthetic multivariate temporal dataset which contains
dimensions that combine to create a hidden output target.
- Abstract(参考訳): 時系列予測とモデリングは、現実世界のデータセットにおいて困難な取り組みであることが証明されている。
2つの重要な問題は、データの多次元性と、潜在出力信号を形成する独立次元の相互作用、および予測モデル内の多次元時間データの表現である。
本稿では、繰り返しオートエンコーダブランチを用いて、データウィンドウの潜在状態ベクトル表現をモデル化し、訓練された潜在ベクトル表現をモデルの予測枝に供給することにより、上記の問題に対処するマルチブランチディープニューラルネットワーク手法を提案する。
このモデルは、Multivariate Temporal Autoencoder (MvTAe)と呼ばれる。
本論文のフレームワークは、隠れた出力ターゲットを作成するために結合された次元を含む合成多変量テンポラリデータセットを利用する。
関連論文リスト
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
本稿では,非対称な受容場オートエンコーダ (ARFA) モデルを提案する。
エンコーダでは,大域的時間的特徴抽出のための大規模なカーネルモジュールを提案し,デコーダでは局所的時間的再構成のための小さなカーネルモジュールを開発する。
降水予測のための大規模レーダエコーデータセットであるRainBenchを構築し,その領域における気象データの不足に対処する。
論文 参考訳(メタデータ) (2023-09-01T07:55:53Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Unsupervised Multiple-Object Tracking with a Dynamical Variational
Autoencoder [25.293475313066967]
動的変分オートエンコーダ(DVAE)に基づく多目的追跡(MOT)のための教師なし確率モデルと関連する推定アルゴリズムを提案する。
DVAEは潜伏変数の深い生成モデルであり、時間的シーケンスのモデリングのための変分オートエンコーダの拡張と見なすことができる。
DVAE-UMOTには、未ラベルの合成データセットの単一オブジェクト軌道上で事前訓練された後に、オブジェクトのダイナミクスをモデル化するために含まれている。
論文 参考訳(メタデータ) (2022-02-18T17:27:27Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
本稿では,MVTSデータにおける異常検出に向けて,TRL-CPC(Contrastive Predictive Coding)を用いた時系列表現学習を提案する。
まず,エンコーダ,自動回帰器,非線形変換関数を共同で最適化し,MVTSデータセットの表現を効果的に学習する。
論文 参考訳(メタデータ) (2022-02-08T04:25:29Z) - Robust Audio Anomaly Detection [10.75127981612396]
提案されたアプローチは、トレーニングデータセットにラベル付き異常が存在することを前提としません。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
ネットワークの出力は、外向きの頑健な確率密度関数である。
論文 参考訳(メタデータ) (2022-02-03T17:19:42Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Dynamical Variational Autoencoders: A Comprehensive Review [23.25573952809074]
動的変分オートエンコーダ(DVAE)と呼ばれるモデルの一般的なクラスを紹介し,議論する。
我々は最近提案された7つのDVAEモデルについて詳述し、表記法とプレゼンテーションラインの均質化を目的としている。
我々は,これらの7つのDVAEモデルを再実装し,音声分析・再合成タスクで実施した実験結果を示す。
論文 参考訳(メタデータ) (2020-08-28T11:49:33Z) - Interpretable Deep Representation Learning from Temporal Multi-view Data [4.2179426073904995]
変動型オートエンコーダとリカレントニューラルネットワークに基づく生成モデルを提案し,多視点時間データに対する潜時ダイナミクスを推定する。
提案モデルを用いて,モデルの有効性と解釈可能性を示す3つのデータセットを解析する。
論文 参考訳(メタデータ) (2020-05-11T15:59:06Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。