論文の概要: Robust Audio Anomaly Detection
- arxiv url: http://arxiv.org/abs/2202.01784v1
- Date: Thu, 3 Feb 2022 17:19:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-07 16:03:02.924333
- Title: Robust Audio Anomaly Detection
- Title(参考訳): ロバストなオーディオ異常検出
- Authors: Wo Jae Lee, Karim Helwani, Arvindh Krishnaswamy, Srikanth Tenneti
- Abstract要約: 提案されたアプローチは、トレーニングデータセットにラベル付き異常が存在することを前提としません。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
ネットワークの出力は、外向きの頑健な確率密度関数である。
- 参考スコア(独自算出の注目度): 10.75127981612396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an outlier robust multivariate time series model which can be used
for detecting previously unseen anomalous sounds based on noisy training data.
The presented approach doesn't assume the presence of labeled anomalies in the
training dataset and uses a novel deep neural network architecture to learn the
temporal dynamics of the multivariate time series at multiple resolutions while
being robust to contaminations in the training dataset. The temporal dynamics
are modeled using recurrent layers augmented with attention mechanism. These
recurrent layers are built on top of convolutional layers allowing the network
to extract features at multiple resolutions. The output of the network is an
outlier robust probability density function modeling the conditional
probability of future samples given the time series history. State-of-the-art
approaches using other multiresolution architectures are contrasted with our
proposed approach. We validate our solution using publicly available machine
sound datasets. We demonstrate the effectiveness of our approach in anomaly
detection by comparing against several state-of-the-art models.
- Abstract(参考訳): 雑音の多い学習データに基づいて,これまで見られなかった異常な音を検出するために,外向き頑健な多変量時系列モデルを提案する。
提案したアプローチでは、トレーニングデータセットにラベル付き異常の存在を前提とせず、新しいディープニューラルネットワークアーキテクチャを使用して、トレーニングデータセットの汚染に対して堅牢でありながら、多変量時系列の時間的ダイナミクスを複数の解像度で学習する。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
これらのリカレント層は畳み込み層の上に構築され、ネットワークは複数の解像度で特徴を抽出することができる。
ネットワークの出力は、時系列履歴を与えられた将来のサンプルの条件付き確率をモデル化する外れ値ロバストな確率密度関数である。
他のマルチレゾリューションアーキテクチャを用いた最先端のアプローチは,提案手法とは対照的である。
利用可能な機械音響データセットを用いて,我々のソリューションを検証する。
いくつかの最先端モデルと比較することにより,異常検出におけるアプローチの有効性を示す。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection [0.0]
多変量時系列における異常検出を行うために,終端から終端までの微分可能なニューラルネットワークアーキテクチャを提案する。
このアーキテクチャは、信号の線形予測可能なコンポーネントを分離するために設計された動的システムのカスケードである。
異常検出器は、予測残差の時間的構造を利用して、孤立した点異常とセットポイントの変化の両方を検出する。
論文 参考訳(メタデータ) (2022-02-25T01:50:22Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Time-Series Anomaly Detection with Implicit Neural Representation [0.38073142980733]
Inlicit Neural Representation-based Anomaly Detection (INRAD)を提案する。
入力に時間がかかり、その時点で対応する値を出力する単純な多層パーセプトロンを訓練する。
そして,その表現誤りを異常検出のための異常スコアとして利用する。
論文 参考訳(メタデータ) (2022-01-28T06:17:24Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
本稿では,ロバスト時系列異常検出フレームワークRobustTADを提案する。
時系列データのために、堅牢な季節差分解と畳み込みニューラルネットワークを統合する。
パブリックオンラインサービスとしてデプロイされ、Alibaba Groupのさまざまなビジネスシナリオで広く採用されている。
論文 参考訳(メタデータ) (2020-02-21T20:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。