論文の概要: Agent Based Computational Model Aided Approach to Improvise the
Inequality-Adjusted Human Development Index (IHDI) for Greater Parity in Real
Scenario Assessments
- arxiv url: http://arxiv.org/abs/2010.03677v1
- Date: Wed, 7 Oct 2020 22:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 17:38:04.747561
- Title: Agent Based Computational Model Aided Approach to Improvise the
Inequality-Adjusted Human Development Index (IHDI) for Greater Parity in Real
Scenario Assessments
- Title(参考訳): エージェントベース計算モデルを用いた実シナリオ評価における不平等適応型人間開発指標(IHDI)の改善
- Authors: Pradipta Banerjee, Subhrabrata Choudhury
- Abstract要約: 不平等調整人間開発指数(IHDI)は、人間開発に焦点を当てた複合インデックスの変更経路である。
エージェント・ベース・コンピューティング・システム・モデル・アプローチを用いて既存の指標の明らかな欠点と改善の可能性について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To design, evaluate and tune policies for all-inclusive human development,
the primary requisite is to assess the true state of affairs of the society.
Statistical indices like GDP, Gini Coefficients have been developed to
accomplish the evaluation of the socio-economic systems. They have remained
prevalent in the conventional economic theories but little do they have in the
offing regarding true well-being and development of humans. Human Development
Index (HDI) and thereafter Inequality-adjusted Human Development Index (IHDI)
has been the path changing composite-index having the focus on human
development. However, even though its fundamental philosophy has an
all-inclusive human development focus, the composite-indices appear to be
unable to grasp the actual assessment in several scenarios. This happens due to
the dynamic non-linearity of social-systems where superposition principle
cannot be applied between all of its inputs and outputs of the system as the
system's own attributes get altered upon each input. We would discuss the
apparent shortcomings and probable refinement of the existing index using an
agent based computational system model approach.
- Abstract(参考訳): 全排他的人間開発のための政策を設計、評価、調整するには、社会の実態を評価することが第一条件である。
GDP、ギニ係数などの統計指標は、社会経済システムの評価を達成するために開発された。
従来の経済理論では普及していないが、人間の正体や発展に悪影響を及ぼすことはほとんどない。
人間開発指数(HDI)とその後の不平等調整人開発指数(IHDI)は、人間開発に焦点を当てた複合インデックスの変更経路である。
しかしながら、その基本的な哲学は全包括的人間開発に焦点を当てているが、複合指標はいくつかのシナリオで実際の評価を把握できないようである。
これは、システム自身の属性が入力ごとに変更されるため、システムの全ての入力と出力の間に重ね合わせ原則を適用することができない社会システムの動的非線形性によって起こる。
本稿では,エージェントベースの計算システムモデルを用いて,既存の指標の明らかな欠点と改善の可能性について議論する。
関連論文リスト
- WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
我々は、予測モデルの機能を階層に分類し、WorldSimBenchと呼ばれる2つの評価フレームワークを提案することにより、World Simulatorの評価の第一歩を踏み出す。
WorldSimBenchにはExplicit Perceptual EvaluationとImplicit Manipulative Evaluationが含まれている。
我々の総合的な評価は、ビデオ生成モデルのさらなる革新を促進する重要な洞察を与え、World Simulatorsをエンボディされた人工知能への重要な進歩と位置づけている。
論文 参考訳(メタデータ) (2024-10-23T17:56:11Z) - Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition [70.60872754129832]
アンラーニングに関する最初のNeurIPSコンペティションは、新しいアルゴリズムの開発を刺激しようとした。
世界中から約1200チームが参加した。
トップソリューションを分析し、アンラーニングのベンチマークに関する議論を掘り下げます。
論文 参考訳(メタデータ) (2024-06-13T12:58:00Z) - ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models [53.00812898384698]
生成型大規模言語モデル(LLM)の人間による評価は多分野にわたる作業であるべきだと論じる。
認知バイアスが、流動的な情報や真理をいかに説明するか、そして、認識の不確実性が、Likertのような評価スコアの信頼性にどのように影響するかを強調します。
本稿では,ConSiDERS-The-Human評価フレームワークを提案する。一貫性,スコーリング基準,差別化,ユーザエクスペリエンス,責任,スケーラビリティの6つの柱からなる。
論文 参考訳(メタデータ) (2024-05-28T22:45:28Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - Agent Alignment in Evolving Social Norms [65.45423591744434]
本稿では,エージェント進化とアライメントのための進化的フレームワークであるEvolutionaryAgentを提案する。
社会規範が継続的に進化する環境では、エージェントは現在の社会規範に適応し、生存と増殖の確率が高くなる。
進化的エージェントは、一般的なタスクにおいてその能力を維持しながら、進化する社会規範と徐々に整合できることを示す。
論文 参考訳(メタデータ) (2024-01-09T15:44:44Z) - Measuring Value Alignment [12.696227679697493]
本稿では,AIシステムと人的価値の整合性を定量化する新しいフォーマリズムを提案する。
このフォーマリズムを利用することで、AI開発者と倫理学者は、人間の価値と調和して動作するように、AIシステムを設計し、評価することができる。
論文 参考訳(メタデータ) (2023-12-23T12:30:06Z) - Hierarchical Evaluation Framework: Best Practices for Human Evaluation [17.91641890651225]
NLPハマーにおける広く受け入れられている評価基準の欠如は、異なるシステム間での公正な比較と、普遍的な評価基準の確立である。
我々は,NLPシステムの性能をより包括的に表現するための,独自の階層的評価フレームワークを開発した。
今後の課題として,NLPシステムの評価を行う上で,提案するフレームワークの時間節約効果について検討する。
論文 参考訳(メタデータ) (2023-10-03T09:46:02Z) - Evaluating the Social Impact of Generative AI Systems in Systems and Society [43.32010533676472]
テキスト(コードを含む)、画像、オーディオ、ビデオなどを含むモダリティにまたがる生成AIシステムは、幅広い社会的影響を持つ。
これらの影響を評価するための公式な基準や、どの影響を評価するべきかの基準はありません。
本稿では,任意のモダリティに対して基本生成型AIシステムを評価するための,標準的なアプローチに向けたガイドを提案する。
論文 参考訳(メタデータ) (2023-06-09T15:05:13Z) - Rethinking Model Evaluation as Narrowing the Socio-Technical Gap [34.08410116336628]
モデル評価の実践は、この均質化によってもたらされる課題や責任に対処するために、重要なタスクを負わなければならない、と我々は主張する。
我々は,現実世界の社会要求に基づく評価手法の開発をコミュニティに促す。
論文 参考訳(メタデータ) (2023-06-01T00:01:43Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。