論文の概要: Replicating Human Social Perception in Generative AI: Evaluating the Valence-Dominance Model
- arxiv url: http://arxiv.org/abs/2503.04842v1
- Date: Wed, 05 Mar 2025 17:35:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 19:13:14.718098
- Title: Replicating Human Social Perception in Generative AI: Evaluating the Valence-Dominance Model
- Title(参考訳): ジェネレーティブAIにおける人間の社会的知覚の再現:妥当性支配モデルの評価
- Authors: Necdet Gurkan, Kimathi Njoki, Jordan W. Suchow,
- Abstract要約: マルチモーダル生成型AIシステムは、人間の社会的知覚の重要な側面を再現できることを示す。
発見は、AIによる意思決定と人間とAIのインタラクションに関する重要な疑問を提起する。
- 参考スコア(独自算出の注目度): 0.13654846342364302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence (AI) continues to advance--particularly in generative models--an open question is whether these systems can replicate foundational models of human social perception. A well-established framework in social cognition suggests that social judgments are organized along two primary dimensions: valence (e.g., trustworthiness, warmth) and dominance (e.g., power, assertiveness). This study examines whether multimodal generative AI systems can reproduce this valence-dominance structure when evaluating facial images and how their representations align with those observed across world regions. Through principal component analysis (PCA), we found that the extracted dimensions closely mirrored the theoretical structure of valence and dominance, with trait loadings aligning with established definitions. However, many world regions and generative AI models also exhibited a third component, the nature and significance of which warrant further investigation. These findings demonstrate that multimodal generative AI systems can replicate key aspects of human social perception, raising important questions about their implications for AI-driven decision-making and human-AI interactions.
- Abstract(参考訳): 人工知能(AI)は、特に生成モデルにおいて進歩を続けている。
社会的認知の確立された枠組みは、社会的判断が、価値(例えば、信頼性、温かさ)と支配(例えば、力、主張性)の2つの主要な側面に沿って組織されていることを示唆している。
本研究では,マルチモーダル生成型AIシステムが,顔画像の評価において,この原子価優位構造を再現できるかどうかと,その表現が世界各国で観測されているものとどのように一致しているかを検討する。
主成分分析 (PCA) により, 抽出された次元は, 値と支配の理論的構造を密接に反映し, 特性負荷は確立された定義と一致していることがわかった。
しかし、多くの世界地域と生成AIモデルもまた第3の要素を示しており、その性質と重要性はさらなる調査を保証している。
これらの結果は、マルチモーダル生成型AIシステムが人間の社会的知覚の重要な側面を再現できることを示し、AIによる意思決定と人間とAIの相互作用に影響を及ぼす重要な疑問を提起する。
関連論文リスト
- A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust [2.4578723416255754]
人間中心型AI(HCAI)は人間の価値観との整合性を強調し、説明可能なAI(XAI)はAI決定をより理解しやすくすることで透明性を高める。
本稿では,HCAI と XAI を橋渡し,構造的説明可能性パラダイムを確立する新しい3層フレームワークを提案する。
我々の発見は、透明性、適応性、倫理的に整合したAIシステムを育成するHCXAI(Human-Centered Explainable AI)を前進させた。
論文 参考訳(メタデータ) (2025-04-14T01:29:30Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
現在のAIシステムは、幻覚、予測不能、そして人間の意思決定と不一致といった課題に直面している。
本研究では、確率的生成(LLM)とホワイトボックスの手続き的推論(チェーン・オブ・シント)を統合し、解釈可能で、継続的な学習可能で、人間に準拠したAIシステムを構築する二チャンネルインテリジェントアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-04-12T18:15:49Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
論文 参考訳(メタデータ) (2024-09-18T06:06:13Z) - AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - AI-enhanced Collective Intelligence [2.5063318977668465]
人間とAIは、人間またはAIの集団的知性を単独で超越できる補完的能力を持っている。
このレビューでは、複雑なネットワーク科学からの視点を取り入れ、人間-AI集団知能の多層表現を概念化する。
エージェントの多様性と相互作用がシステムの集合知にどのように影響するかを探求し、AIによって強化された集合知の実例を分析する。
論文 参考訳(メタデータ) (2024-03-15T16:11:15Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Modelling Human Values for AI Reasoning [2.320648715016106]
我々は,その明示的な計算表現のために,人間の値の形式モデルを詳述する。
我々は、このモデルが、価値に対するAIベースの推論の基礎となる装置をいかに提供できるかを示す。
我々は、AIにおける人間の価値を統合し、学際的に研究するためのロードマップを提案する。
論文 参考訳(メタデータ) (2024-02-09T12:08:49Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。