論文の概要: On the importance of pre-training data volume for compact language
models
- arxiv url: http://arxiv.org/abs/2010.03813v2
- Date: Fri, 9 Oct 2020 14:36:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 11:14:07.492742
- Title: On the importance of pre-training data volume for compact language
models
- Title(参考訳): コンパクト言語モデルにおける事前学習データ量の重要性について
- Authors: Vincent Micheli, Martin d'Hoffschmidt, Fran\c{c}ois Fleuret
- Abstract要約: 本研究では,事前学習データ量がコンパクト言語モデルに与える影響について検討する。
我々は,100MBのテキストで良好な性能のモデルが得られることを観察した。
- 参考スコア(独自算出の注目度): 0.7691755449724638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in language modeling have led to computationally intensive
and resource-demanding state-of-the-art models. In an effort towards
sustainable practices, we study the impact of pre-training data volume on
compact language models. Multiple BERT-based models are trained on gradually
increasing amounts of French text. Through fine-tuning on the French Question
Answering Dataset (FQuAD), we observe that well-performing models are obtained
with as little as 100 MB of text. In addition, we show that past critically low
amounts of pre-training data, an intermediate pre-training step on the
task-specific corpus does not yield substantial improvements.
- Abstract(参考訳): 言語モデリングの最近の進歩は、計算集約的で資源需要の高い最先端のモデルに繋がった。
持続可能な実践に向けた取り組みとして,データボリュームの事前トレーニングがコンパクト言語モデルに与える影響について検討する。
複数のBERTベースのモデルは、徐々に増大するフランス語のテキストに基づいて訓練される。
フランスの質問応答データセット(fquad)を微調整することで、100mbのテキストでパフォーマンスの良いモデルが得られることを観察した。
さらに, 従来より低量の事前学習データにおいて, タスク固有コーパスの中間訓練ステップが大幅に改善されないことを示す。
関連論文リスト
- A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
事前訓練されたLarge Language Models (LLM) を採用することは、膨大なデータ要件にもかかわらず、自然言語処理(NLP)における事実上の標準となっている。
限られたデータを用いたLLMの学習に焦点をあてた最近の研究の急増に触発された本研究では、データ不足の下流タスクにおけるモデル性能を最適化するための、近年のトランスファー学習アプローチについて調査する。
論文 参考訳(メタデータ) (2024-11-14T15:55:37Z) - Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models [29.367678364485794]
本稿では,言語モデルの事前学習を継続する上で,効率的なデータ分布と学習率スケジュールを設計する方法を示す。
プレトレーニングセットにおける継続トレーニングのベースラインと比較すると,平均モデル精度は9%向上した。
論文 参考訳(メタデータ) (2024-07-09T22:37:59Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - Efficient Training of Language Models to Fill in the Middle [17.118891860985123]
自動回帰言語モデルは、データセットに直接的な変換を適用した後、テキストを埋めることを学ぶことができる。
FIMモデルのトレーニングには、デフォルト設定の強い設定とベストプラクティスを規定するために、これらのアブリケーションを使用します。
私たちはAPIのベストプラクティスでトレーニングされた最高のインフィルモデルをリリースし、将来の研究を支援するためにインフィルベンチマークをリリースしました。
論文 参考訳(メタデータ) (2022-07-28T17:40:47Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
低リソース言語に対するモノリンガルデータによる事前学習の効果を分析する。
新たに作成したマルタ語コーパスを提示し、事前学習データサイズとドメインが下流のパフォーマンスに与える影響を判定する。
スクラッチからトレーニングされた単言語BERTモデル(BERTu)と、さらに事前訓練された多言語BERT(mBERTu)の2つのモデルを比較する。
論文 参考訳(メタデータ) (2022-05-21T06:44:59Z) - Recent Advances in Natural Language Processing via Large Pre-Trained
Language Models: A Survey [67.82942975834924]
BERTのような大規模で事前訓練された言語モデルは、自然言語処理(NLP)の分野を大きく変えた。
本稿では,これらの大規模言語モデルを用いたNLPタスクの事前学習,微調整,プロンプト,テキスト生成といった手法を用いた最近の研究について紹介する。
論文 参考訳(メタデータ) (2021-11-01T20:08:05Z) - Pre-Training a Language Model Without Human Language [74.11825654535895]
先行学習データの本質的性質が下流性能の微調整にどのように寄与するかを検討する。
非構造化データで事前に訓練されたモデルは、下流のタスクでゼロから訓練されたモデルに勝った。
驚くべきことに、特定の非人間言語データの事前トレーニングがGLUEのパフォーマンスを他の非英語言語で事前トレーニングされたパフォーマンスに近づけることを明らかにしました。
論文 参考訳(メタデータ) (2020-12-22T13:38:06Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Data Rejuvenation: Exploiting Inactive Training Examples for Neural
Machine Translation [86.40610684026262]
本研究では,モデルの性能に寄与しない非アクティブなトレーニング例を特定する。
非アクティブな例を利用して大規模なデータセット上でのNMTモデルのトレーニングを改善するために、データ再構成を導入する。
WMT14の英語・ドイツ語・英語・フランス語データセットによる実験結果から,提案したデータ再生は一貫して,いくつかの強力なNMTモデルの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2020-10-06T08:57:31Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
訓練済みの言語モデルから下流の言語間タスクへの微調整は、有望な結果を示している。
ダウンストリームタスクに微調整する場合、継続学習を活用して、事前学習したモデルの言語間能力を維持する。
提案手法は、ゼロショット言語間タグ付けや名前付きエンティティ認識タスクにおいて、他の微調整ベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-04-29T14:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。