論文の概要: Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- arxiv url: http://arxiv.org/abs/2409.06131v2
- Date: Tue, 28 Jan 2025 19:18:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:25.390102
- Title: Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- Title(参考訳): LFR教育による大規模言語モデルの事前学習の促進:学習、焦点、レビュー
- Authors: Neha Prakriya, Jui-Nan Yen, Cho-Jui Hsieh, Jason Cong,
- Abstract要約: Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
- 参考スコア(独自算出の注目度): 50.78587571704713
- License:
- Abstract: Traditional Large Language Model (LLM) pretraining relies on autoregressive language modeling with randomly sampled data from web-scale datasets. Inspired by human learning techniques like spaced repetition, we hypothesize that random sampling leads to high training costs, lower-quality models, and significant data forgetting. To address these inefficiencies, we propose the Learn-Focus-Review (LFR) paradigm -- a dynamic training approach that adapts to the model's learning progress. LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset that are more prone to being forgotten, enabling better retention and more efficient learning. Using the LFR paradigm, we pretrained Llama and GPT models on the SlimPajama and OpenWebText datasets, respectively. These models were evaluated on downstream tasks across various domains, including question answering, problem-solving, commonsense reasoning, language modeling, and translation. Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy, while using only 5%--19% of the training tokens. Furthermore, LFR matched the performance of industry-standard Pythia models with up to 2$\times$ the parameter count, using just 3.2% of the training tokens, demonstrating its effectiveness and efficiency.
- Abstract(参考訳): 従来のLarge Language Model(LLM)事前トレーニングは、Webスケールデータセットからランダムにサンプリングされたデータを使った自動回帰言語モデリングに依存している。
空間的反復のような人間の学習技術にインスパイアされた我々は、ランダムサンプリングが高いトレーニングコスト、低品質モデル、重要なデータ忘れにつながるという仮説を立てた。
これらの非効率性に対処するために、モデルの学習進捗に適応する動的トレーニングアプローチであるLearning-Focus-Review(LFR)パラダイムを提案する。
LFRは、データブロック全体(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、忘れられやすいデータセットの挑戦的な領域を再考し、より優れた保持とより効率的な学習を可能にする。
LFR パラダイムを用いて,SlimPajama と OpenWebText データセット上で Llama と GPT モデルを事前訓練した。
これらのモデルは、質問応答、問題解決、常識推論、言語モデリング、翻訳など、様々な領域にわたる下流タスクで評価された。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRはトレーニングトークンの5%から19%しか使用せず、低いパープレキシティと高い精度を達成した。
さらに、LFRは業界標準のPythiaモデルの性能を最大2$\times$パラメータカウントと比較し、トレーニングトークンの3.2%しか使用せず、その有効性と効率を実証した。
関連論文リスト
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
論文 参考訳(メタデータ) (2024-11-14T23:56:57Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
大規模言語モデル(LLM)は、多様なサブ集団を表すテキストを生成する。
本稿では,知識蒸留により強化されたクラスタリングに基づくアクティブラーニングフレームワークを提案する。
2つの新しいデータセットをモデルトレーニングと組み合わせて構築し、ベースラインモデルよりも2%-10%の性能向上を示した。
論文 参考訳(メタデータ) (2024-10-17T15:09:35Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
トレーニングコーパスの高度に代表的なサブセットを選択するために、サブモジュラー最適化を利用する方法を示す。
その結果,完全学習モデルの性能の最大$sim99%が得られた。
論文 参考訳(メタデータ) (2023-05-11T09:24:41Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
本研究は,非構造的重み空間を用いて,事前訓練中にのみ重みのサブセットを訓練する利点を示す。
我々は1.3Bパラメータ GPT-3 XL モデルに最大75%の間隔を誘導できることを示す。
論文 参考訳(メタデータ) (2023-03-18T17:56:01Z) - Efficient Training of Language Models to Fill in the Middle [17.118891860985123]
自動回帰言語モデルは、データセットに直接的な変換を適用した後、テキストを埋めることを学ぶことができる。
FIMモデルのトレーニングには、デフォルト設定の強い設定とベストプラクティスを規定するために、これらのアブリケーションを使用します。
私たちはAPIのベストプラクティスでトレーニングされた最高のインフィルモデルをリリースし、将来の研究を支援するためにインフィルベンチマークをリリースしました。
論文 参考訳(メタデータ) (2022-07-28T17:40:47Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。